The p̄p total annihilation cross section has been measured, with the Obelix apparatus at LEAR, at ten values of the antiproton incident momentum between 43 and 175 MeV/ c . The values of the cross section show that the well known 1 p behaviour of the annihilation cross section is drastically modified at very low momenta, which demonstrates the important role of the Coulomb force in low energy p̄p interaction. Moreover, they do not present any explicit resonant behaviour. Finally, when compared to potential model calculations, the data suggest that the percentage of P-wave in p̄p interaction around 50 MeV/ c antiproton incident momentum is less than 5%.
No description provided.
The frequency of the protonium annihilation channel p p → K S K L has been measured at three different target densities: liquid hydrogen ( LH ), gaseous hydrogen at NTP conditions and gaseous hydrogen at low pressure (5 mbar). The obtained results are: f( p p → K S K L , LH) = (7.8 ± 0.7 stat ± 0.3 sys ) × 10 −4 , f( p p → K S K L , NTP) = (3.5 ± 0.5 stat ± 0.2 sys ) × 10 −4 and f( p p → K S K L , 5 mbar ) = (1.0 ± 0.3 stat ± 0.1 sys ) × 10 −4 . Since the K S K L final stat and be originated only from the 3 S 1 initial state, these values give direct information on the scaling of the protonium spin-triplet S-wave annihilation probability with the density.
Three different target densities: liquid hydrogen (LH), gaseous hydrogen atstandard temperature and pressure conditions (NTP), and gaseous hydrogen at 5 m bar pressure (LP). The annihilation proceeds only from 3S1 initial state.
Differential cross sections for p p elastic scattering have been measured for very small momentum transfers at six different incident antiproton momenta in the range 3.7 to 6.2 GeV/c by the detection of recoil protons at scattering angles close to 90°. Forward scattering parameters σ T , b , and ϱ have been determined. For the ϱ-parameter, up to an order of magnitude higher level of precision has been achieved compared to that in earlier experiments. It is found that existing dispersion theory predictions are in disagreement with our results for the ϱ-parameter.
Results of the SIG(T)-free analysis. Errors include systematic uncertainties.
Results of the SIG(T)-fixed analysis. Errors include systematic uncertainties.
CT values of the total cross section from the SIG(T)-free analysis. Errors include systematic uncertainties.
We present the first experimental study of the ratio of cumulant to factorial moments of the charged-particle multiplicity distribution in high-energy particle interactions, using hadronic Z$^0$ decays collected by the SLD experiment at SLAC. We find that this ratio, as a function of the moment-rank $q$, decreases sharply to a negative minimum at $q=5$, which is followed by quasi-oscillations. These features are insensitive to experimental systematic effects and are in qualitative agreement with expectations from next-to-next-to-leading-order perturbative QCD.
CONST is the cumulant to factorial moments ratio. See text for definition.
A new measurement of the total e + e − → hadrons cross-section in the centre of mass energy range 1.8-2.5 GeV, performed by the FENICE experiment at the Frascati e + e − storage ring ADONE, is presented. The behaviour of the total cross section together with the proton electromagnetic time-like form factor is discussed in terms of a narrow vector resonance close to the nucleon-antinucleon threshold.
Only statistical errors are quoted.
Cross sections for J ψ,ψ′ and Drell-Yan production in Pb+Pb collisions at 158×A GeV/c are presented and compared with results obtained by the NA38 and NA51 collaborations. The Pb+Pb data have been collected by the NA50 collaboration using the NA38 dimuon spectrometer. The Drell-Yan mechanism is found to scale as (A projectile · B target ) in p+B target and A projectile + B target collisions including Pb+Pb collisions. Regarding J ψ , an anomalous suppression is observed in Pb+Pb collisions with respect to the suppression observed in p+B target , O+B target and S+U collisions. The cross section ratios ψ′ ( J ψ ) are similar in Pb+Pb and S+U collisions.
No description provided.
No description provided.
Preliminary inclusive spectra of negative hadrons, net protons and neutral strange particles are presented, measured by the NA49 experiment in central Pb+Pb collisions at 158 GeV per nucleon. Comparison of their yields with those from the lighter S+S system suggests that the yields scale approximately with the number of participating nucleons.
CENTRAL COLLISIONS, PRELIMINARY DATA.
CENTRAL COLLISIONS, PRELIMINARY DATA.
CENTRAL COLLISIONS, PRELIMINARY DATA.
A fresh analysis is reported of high statistics Crystal Barrel data on p p → 3π 0 , ηηπ 0 , ηπ 0 π 0 and ηη ′ π 0 at rest. This analysis is made fully consistent with CERN-Munich data on π + π − → π + π − up to a mass of 1900 MeV, with GAMS data on π + π − → π 0 π 0 , and with BNL and ANL data on π + π − → K K , which are fitted simultaneously. There is evidence for an I = 0, J PC = 2 ++ resonance with weak (≤ 7%) coupling to ππ, strong coupling to both ϱϱ and ωω and pole position 1534 - i90 MeV. This resonance agrees qualitatively with GAMS and VES data on ππ → ωω, previously interpreted in terms of a resonance at 1590–1640 MeV. New masses and widths for (A) ƒ 0 (1370) and (B) ƒ 0 (1500) , fitted to all eight data sets, are M A = 1300 ± 15 Mev, Γ A = 230 ± 15 MeV, M B = 1500 ± 8 MeV, Γ B = 132 ± 15 MeV. Branching ratios to ππ and ηη are given, and differ significantly from earlier determinations because of a new procedure.
A fraction of the initial P-state annihilation into F2(1270) cannot be ruled out. Therefore, the ratio magnitudes include the contribution due to this channel. MESON0 denotes A2(1630) state, not present in RPP.
Data are presented on the reaction e+e− → γ + no other detected particle at centre-of-mass energies of 89.48, 91.26 and 93.08 GeV. The cross-section for this reaction is related directly to the number of light neutrino generations which couple to the Z° boson, and to several other possible phenomena such as the production of excited neutrinos, the production of any invisible ‘X’ particle, and the magnetic moment of the tau neutrino. Based on the observed number of single photon events, the number of light neutrinos that couple to the Z° is measured to be Nv = 2.89 ± 0.38. No evidence is found for anomalous production of energetic single photons, and upper limits at 95% confidence level are determined for excited neutrino production (BR < 4 − 8 × 10−6 depending on its mass), production of an invisible ‘X’ particle (σ, < 0.1 pb for masses below 60 GeV), and the magnetic moment of the tau neutrino (< 5.1 × 10-6 μB).
No description provided.
Limit on an anomalous magnetic moment for tau-neutrino from '1GAMMA + nothing' events. Magnetic moment in Bohr magnetons.
Here UNSPEC is invisible particle.
None
PRELIMINARY DATA. THE DISTRIBUTION (1/PT)*D(N)/D(PT) HAS BEEN FITTED BY A FORMULA SQRT(MT)*K1(SLOPE*MT), WHERE K1 IS THE MAKDONALD FUNCTION.