Charged hadron multiplicity fluctuations in Au+Au and Cu+Cu collisions from sqrt(s_NN) = 22.5 to 200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 78 (2008) 044902, 2008.
Inspire Record 785509 DOI 10.17182/hepdata.143616

A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV, and Cu+Cu collisions sqrt(s_NN) = 22.5, 62.4, and 200 GeV. Fluctuations are measured as a function of collision centrality, transverse momentum range, and charge sign. After correcting for non-dynamical fluctuations due to fluctuations in the collision geometry within a centrality bin, the remaining dynamical fluctuations expressed as the variance normalized by the mean tend to decrease with increasing centrality. The dynamical fluctuations are consistent with or below the expectation from a superposition of participant nucleon-nucleon collisions based upon p+p data, indicating that this dataset does not exhibit evidence of critical behavior in terms of the compressibility of the system. An analysis of Negative Binomial Distribution fits to the multiplicity distributions demonstrates that the heavy ion data exhibit weak clustering properties.

2 data tables match query

The mean from the NBD fit as a function of $N_{part}$ for 200 GeV Au+Au collisions over the range 0.2 < $p_T$ < 2.0 GeV/$c$.

The mean from the NBD fit as a function of $N_{part}$ for 62.4 GeV Au+Au collisions over the range 0.2 < $p_T$ < 2.0 GeV/$c$.


Enhanced production of direct photons in Au+Au collisions at sqrt(s_NN)=200 GeV and implications for the initial temperature

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 104 (2010) 132301, 2010.
Inspire Record 784417 DOI 10.17182/hepdata.141275

The production of low mass e+e- pairs for m_{e+e-} < 300 MeV/c^2 and 1 < p_T <5 GeV/c is measured in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. Enhanced yield above hadronic sources is observed. Treating the excess as internal conversions, the invariant yield of direct photons is deduced. In central Au+Au collisions, the excess of direct photon yield over p+p is exponential in transverse momentum, with inverse slope T = 221 +/- 19 (stat) +/- 19 (syst) MeV. Hydrodynamical models with initial temperatures ranging from 300--600 MeV at times of ~ 0.6 - 0.15 fm/c after the collision are in qualitative agreement with the data. Lattice QCD predicts a phase transition to quark gluon plasma at ~ 170 MeV.

1 data table match query

The fraction of the direct photon component as a function of $p_T$.


Nuclear effects on hadron production in d + Au and p + p collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 74 (2006) 024904, 2006.
Inspire Record 711951 DOI 10.17182/hepdata.141892

PHENIX has measured the centrality dependence of mid-rapidity pion, kaon and proton transverse momentum distributions in d+Au and p+p collisions at sqrt(s_NN) = 200 GeV. The p+p data provide a reference for nuclear effects in d+Au and previously measured Au+Au collisions. Hadron production is enhanced in d+Au, relative to independent nucleon-nucleon scattering, as was observed in lower energy collisions. The nuclear modification factor for (anti) protons is larger than that for pions. The difference increases with centrality, but is not sufficient to account for the abundance of baryon production observed in central Au+Au collisions at RHIC. The centrality dependence in d+Au shows that the nuclear modification factor increases gradually with the number of collisions suffered by each participant nucleon. We also present comparisons with lower energy data as well as with parton recombination and other theoretical models of nuclear effects on particle production.

2 data tables match query

Transverse momentum in GeV/$c$ for $\pi^{\pm}$.

Transverse momentum in GeV/$c$ for $\pi^{\pm}$.


Jet structure of baryon excess in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 71 (2005) 051902, 2005.
Inspire Record 656142 DOI 10.17182/hepdata.142148

Two particle correlations between identified meson and baryon trigger particles with 2.5 < p_T < 4.0 GeV/c and lower p_T charged hadrons have been measured at midrapidity by the PHENIX experiment at RHIC in p+p, d+Au and Au+Au collisions at sqrt(s_NN) = 200 GeV. The probability of finding a hadron near in azimuthal angle to the trigger particle is almost identical for leading mesons and baryons for non-central Au+Au. The yield for both trigger baryons and mesons is significantly higher in Au+Au than in p+p and d+Au, except for trigger baryons in central collisions. The baryon excess is likely to arise predominantly from hard scattering processes.

2 data tables match query

$p_T$ spectra of the near side associated charged hadrons corrected to the full jet yield for meson triggers at 2.5 < $p_T$ < 4.0 GeV/$c$ and $|\eta|$ < 0.35 for six centralities in Au+Au and $d$+Au collisions.

$p_T$ spectra of the near side associated charged hadrons corrected to the full jet yield for meson triggers at 2.5 < $p_T$ < 4.0 GeV/$c$ and $|\eta|$ < 0.35 for six centralities in Au+Au and $d$+Au collisions.


Transverse momentum and centrality dependence of dihadron correlations in Au+Au collisions at sqrt(s_NN)=200 GeV: Jet-quenching and the response of partonic matter

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 77 (2008) 011901, 2008.
Inspire Record 751182 DOI 10.17182/hepdata.143605

Azimuthal angle \Delta\phi correlations are presented for charged hadrons from dijets for 0.4 < p_T < 10 GeV/c in Au+Au collisions at sqrt(s_NN) = 200 GeV. With increasing p_T, the away-side distribution evolves from a broad to a concave shape, then to a convex shape. Comparisons to p+p data suggest that the away-side can be divided into a partially suppressed 'head' region centered at Delta\phi ~ \pi, and an enhanced 'shoulder' region centered at Delta\phi ~ \pi +/- 1.1. The p_T spectrum for the 'head' region softens toward central collisions, consistent with the onset of jet quenching. The spectral slope for the 'shoulder' region is independent of centrality and trigger p_T, which offers constraints on energy transport mechanisms and suggests that the 'shoulder' region contains the medium response to energetic jets.

1 data table match query

$I_{AA}$ versus $p_T^B$ for four trigger $p_T$ bins in HR+SR ($|\Delta\phi - \pi|$ < $\pi/2$) and HR ($|\Delta\phi - \pi|$ < $\pi/6$).


Jet properties from dihadron correlations in p+p collisions at s**(1/2) = 200-GeV

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 74 (2006) 072002, 2006.
Inspire Record 716897 DOI 10.17182/hepdata.142287

The properties of jets produced in p+p collisions at sqrt(s)=200 GeV are measured using the method of two particle correlations. The trigger particle is a leading particle from a large transverse momentum jet while the associated particle comes from either the same jet or the away-side jet. Analysis of the angular width of the near-side peak in the correlation function determines the jet fragmentation transverse momentum j_T . The extracted value, sqrt(<j_T^2>)= 585 +/- 6(stat) +/- 15(sys) MeV/c, is constant with respect to the trigger particle transverse momentum, and comparable to the previous lower sqrt(s) measurements. The width of the away-side peak is shown to be a convolution of j_T with the fragmentation variable, z, and the partonic transverse momentum, k_T . The <z> is determined through a combined analysis of the measured pi^0 inclusive and associated spectra using jet fragmentation functions measured in e^+e^-. collisions. The final extracted values of k_T are then determined to also be independent of the trigger particle transverse momentum, over the range measured, with value of sqrt(<k_T^2>) = 2.68 +/- 0.07(stat) +/- 0.34(sys) GeV/c.

1 data table match query

Extracted values of $D(x)$ parameters according from the fit to the LEP data and power $n$ of the unmeasured final state parton spectra $\Sigma_q(\bar{p_T})$ extracted from the fit to the single inclusive $\pi^0$ invariant cross section for corresponding fragmentation and fixed values of $\sqrt{<k^2_T>}$ = 2.5 GeV/$c$.


Trends in Yield and Azimuthal Shape Modification in Dihadron Correlations in Relativistic Heavy Ion Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 104 (2010) 252301, 2010.
Inspire Record 845169 DOI 10.17182/hepdata.146557

Fast parton probes produced by hard scattering and embedded within collisions of large nuclei have shown that partons suffer large energy loss and that the produced medium may respond collectively to the lost energy. We present measurements of neutral pion trigger particles at transverse momenta p^t_T = 4-12 GeV/c and associated charged hadrons (p^a_T = 0.5-7 GeV/c) as a function of relative azimuthal angle Delta Phi at midrapidity in Au+Au and p+p collisions at sqrt(s_NN) = 200 GeV. These data lead to two major observations. First, the relative angular distribution of low momentum hadrons, whose shape modification has been interpreted as a medium response to parton energy loss, is found to be modified only for p^t_T &lt; 7 GeV/c. At higher p^t_T, the data are consistent with unmodified or very weakly modified shapes, even for the lowest measured p^a_T. This observation presents a quantitative challenge to medium response scenarios. Second, the associated yield of hadrons opposite to the trigger particle in Au+Au relative to that in p+p (I_AA) is found to be suppressed at large momentum (IAA ~ 0.35-0.5), but less than the single particle nuclear modification factor (R_AA ~0.2).

1 data table match query

Away-side $I_{AA}$ for the entire away-side $|\Delta \phi - \pi| < \pi /2$ selection vs. $h^{\pm}$ partner momentum for various $\pi^0$ trigger momenta. A point-to-point uncorrelated 6% normalization uncertainty (mainly due to efficiency corrections) applies to all measurements.


Pseudorapidity dependence of particle production and elliptic flow in asymmetric nuclear collisions of $p$$+$Al, $p$$+$Au, $d$$+$Au, and $^{3}$He$+$Au at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 121 (2018) 222301, 2018.
Inspire Record 1684475 DOI 10.17182/hepdata.136476

Asymmetric nuclear collisions of $p$$+$Al, $p$$+$Au, $d$$+$Au, and $^{3}$He$+$Au at $\sqrt{s_{_{NN}}}=200$ GeV provide an excellent laboratory for understanding particle production, as well as exploring interactions among these particles after their initial creation in the collision. We present measurements of charged hadron production $dN_{\rm ch}/d\eta$ in all such collision systems over a broad pseudorapidity range and as a function of collision multiplicity. A simple wounded quark model is remarkably successful at describing the full data set. We also measure the elliptic flow $v_{2}$ over a similarly broad pseudorapidity range. These measurements provide key constraints on models of particle emission and their translation into flow.

1 data table match query

Midrapidity charged hadron $dN_{ch}/d\eta$ per participating quark pair ($N_{qp}$/2) as a function of the number of participating quarks ($N_{qp}$).


Nonperturbative transverse-momentum-dependent effects in dihadron and direct photon-hadron angular correlations in $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.D 98 (2018) 072004, 2018.
Inspire Record 1672014 DOI 10.17182/hepdata.143196

Dihadron and isolated direct photon-hadron angular correlations are measured in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. The correlations are sensitive to nonperturbative initial-state and final-state transverse momentum $k_T$ and $j_T$ in the azimuthal nearly back-to-back region $\Delta\phi\sim\pi$. In this region, transverse-momentum-dependent evolution can be studied when several different hard scales are measured. To have sensitivity to small transverse momentum scales, nonperturbative momentum widths of $p_{\rm out}$, the out-of-plane transverse momentum component perpendicular to the trigger particle, are measured. These widths are used to investigate possible effects from transverse-momentum-dependent factorization breaking. When accounting for the longitudinal momentum fraction of the away-side hadron with respect to the near-side trigger particle, the widths are found to increase with the hard scale; this is qualitatively similar to the observed behavior in Drell-Yan and semi-inclusive deep-inelastic scattering interactions. The momentum widths are also studied as a function of center-of-mass energy by comparing to previous measurements at $\sqrt{s}=510$ GeV. The nonperturbative jet widths also appear to increase with $\sqrt{s}$ at a similar $x_T$, which is qualitatively consistent to similar measurements in Drell-Yan interactions. To quantify the magnitude of any transverse-momentum-dependent factorization breaking effects, calculations will need to be performed to compare to these measurements.

1 data table match query

The per-trigger yields are shown as a function of $\Delta\phi$ in several $p_T^{trig}$ $\otimes$ $p_T^{assoc}$ bins.