We report differential cross sections for the production of D*(2010) produced in 500 GeV/c pi^- nucleon interactions from experiment E791 at Fermilab, as functions of Feynman-x (x_F) and transverse momentum squared (p_T^2). We also report the D* +/- charge asymmetry and spin-density matrix elements as functions of these variables. Investigation of the spin-density matrix elements shows no evidence of polarization. The average values of the spin alignment are \eta= 0.01 +- 0.02 and -0.01 +- 0.02 for leading and non-leading particles, respectively.
Acceptance corrected differential cross sections for D*+- production as a function of XL, Feynman X.
Acceptance corected differential cross sections for D*+- production as a function of PT**2.
Charge production asymmetry as a function of Feynman X.
We present a measurement of the b-quark inclusive fragmentation function in Z0 decays using a novel kinematic B-hadron energy reconstruction technique. The measurement was performed using 350,000 hadronic Z0 events recorded in the SLD experiment at SLAC between 1997 and 1998. We compared the sacled B-hadron energy distribution with models of b-quark fragmentation and with several ad hoc functional forms. A number of models and functions are excluded by the data. The average scaled energy of weakly-decaying B hadrons was measured to be <x_B>= 0.709 +-0.003 (stat) +-0.003 (syst) +-0.002 (model).
DATA FROM THE ERRATUM (PR D66,079905,2002). Measurement of the fragmentation function of weakly decaying B-hadrons in Z0 decays. First systematic (DSYS) error is the systematic error, the second is the estimated error due to the model dependence of the unfolding procedure.
DATA FROM ORIGINAL PAPER, SUPERSEDED BY ERRATUM (SEE ABOVE TABLE). Measurement of the fragmentation function of weakly decaying B-hadrons in Z0 decays. First systematic (DSYS) error is the systematic error, the second is the estimated error due to the model dependence of the unfolding procedure.
The fragmentation of b quarks into B mesons is studied with four million hadronic Z decays collected by the ALEPH experiment during the years 1991-1995. A semi-exclusive reconstruction of B->l nu D(*) decays is performed, by combining lepton candidates with fully reconstructed D(*) mesons while the neutrino energy is estimated from the missing energy of the event. The mean value of xewd, the energy of the weakly-decaying B meson normalised to the beam energy, is found to be mxewd = 0.716 +- 0.006 (stat) +- 0.006 (syst) using a model-independent method; the corresponding value for the energy of the leading B meson is mxel = 0.736 +- 0.006 (stat) +- 0.006 (syst). The reconstructed spectra are compared with different fragmentation models.
Normalized binned spectra for weakly-decaying (WD) leading (L) B-mesons.
The extracted spectra spectra for weakly-decaying (WD) leading (L) B-mesons.
Statistical error matrix for the Weakly Decaying distribution in units of 10**-6.
The elastic electroproduction of phi mesons is studied at HERA with the H1 detector for photon virtualities 1 < Q^2 < 15 GeV^2 and hadronic centre of mass energies 40 < W < 130 GeV. The Q^2 and t dependences of the cross section are extracted (t being the square of the four-momentum transfer to the target proton). When plotted as function of (Q^2 + M_V^2) and scaled by the appropriate SU(5) quark charge factor, the phi meson cross section agrees within errors with the cross sections of the vector mesons V = rho, omega and J/psi. A detailed analysis is performed of the phi meson polarisation state and the ratio of the production cross sections for longitudinally and transversely polarised phi mesons is determined. A small but significant violation of s-channel helicity conservation (SCHC) is observed.
The measured ratio of PHI to RHO0 production.
The cross section for elastic PHI meson electro-production calculated by multiplying the PHI/RHO0 cross section ratio by the RHO0 cross section accurately measured in the earlier H1 publication (EPJ C13,371).
The corrected T distribution of elastic PHI meson production for W around 75 GeV and Q2 in the range 2.5 to 15 GeV**2 (mean = 4.8 GeV**2). Statistical error only.
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
We have developed a new technique for inclusive reconstruction of the energy of B hadrons. The excellent efficiency and resolution of this technique allow us to make the most precise determination of the b-quark fragmentation function, using e+e- -> Z0 decays recorded in the SLD experiment at SLAC. We compared our measurement with the predictions of a number of fragmentation models. We excluded several of these models and measured the average scaled energy of weakly-decaying B hadrons to be <x_B>=0.714+-0.005(stat)+-0.007(syst) +-0.002(model dependence).
Unfolded distribution of weakly decaying scaled B-hadron enery with statistical errors only.
Deep-inelastic ep scattering data, taken with the H1 detector at HERA, are used to study the event shape variables thrust, jet broadening, jet mass, C parameter and two kinds of differential two-jet rate. The data cover a large range of the four-momentum transfer Q, which is considered to be the relevant energy scale, between 7 GeV and 100 GeV. The Q dependences of the mean values are compared with second order calculations of perturbative QCD applying power law corrections proportional to 1/Q^p to account for hadronization effects. The concept of power corrections is investigated by fitting simultaneously a non-perturbative parameter alpha_p and the strong coupling constant alpha_s.
Corrected mean values of the (1-THRUST) distribution (w.r.t.current hemisphere axis) as a function of Q.
Corrected mean values of the Jet Broadenning (B) distribution (w.r.t.current hemisphere axis) as a function of Q.
Corrected mean values of the (1-THRUST) distribution (w.r.t.max long. momentum axis) as a function of Q.
The electroproduction of J/psi and psi(2S) mesons is studied in elastic, quasi-elastic and inclusive reactions for four momentum transfers 2 < Q^2 < 80 GeV^2 and photon-proton centre of mass energies 25 < W < 180 GeV. The data were taken with the H1 detector at the electron proton collider HERA in the years 1995 to 1997. The total virtual photon-proton cross section for elastic J/psi production is measured as a function of Q^2 and W. The dependence of the production rates on the square of the momentum transfer from the proton (t) is extracted. Decay angular distributions are analysed and the ratio of the longitudinal and transverse cross sections is derived. The ratio of the cross sections for quasi-elastic psi(2S) and J/psi meson production is measured as a function of Q^2. The results are discussed in terms of theoretical models based upon perturbative QCD. Differential cross sections for inclusive and inelastic production of J/psi mesons are determined and predictions within two theoretical frameworks are compared with the data, the non-relativistic QCD factorization approach including colour octet and colour singlet contributions, and the model of Soft Colour Interactions.
Cross section for elastic J/PSI photoproduction in W bins.
Cross section for elastic J/PSI photoproduction in W bins.
Cross section for elastic J/PSI photoproduction in W bins.
The elastic electroproduction of rho mesons is studied at HERA with the H1 detector for a photon virtuality in the range 1 < Q^2 < 60 GeV^2 and for a hadronic centre of mass energy in the range 30 < W < 140 GeV. The shape of the pipi mass distribution in the rho resonance region is measured as a function of Q^2. The full set of rho spin density matrix elements is determined, and evidence is found for a helicity flip amplitude at the level of 8 +- 3 % of the non-flip amplitudes. Measurements are presented of the dependence of the cross section on Q^2, W and t (the four-momentum transfer squared to the proton). They suggest that, especially at large Q^2, the gamma^*p cross section develops a stronger W dependence than that expected from the behaviour of elastic and total hadron-hadron cross sections.
Average values of the spin density matrix elements measured for the 1996 data sample.
Spin density matrix elements measured for 3 Q**2 values for the 1996 data sample.
Spin density matrix elements measured for 3 W values for the 1996 data sample.
Gluon jets are identified in hadronic Z0 decays as all the particles in a hemisphere opposite to a hemisphere containing two tagged quark jets. Gluon jets defined in this manner are equivalent to gluon jets produced from a color singlet point source and thus correspond to the definition employed for most theoretical calculations. In a separate stage of the analysis, we select quark jets in a manner to correspond to calculations, as the particles in hemispheres of flavor tagged light quark (uds) events. We present the distributions of rapidity, scaled energy, the logarithm of the momentum, and transverse momentum with respect to the jet axes, for charged particles in these gluon and quark jets. We also examine the charged particle multiplicity distributions of the jets in restricted intervals of rapidity. For soft particles at large transverse momentum, we observe the charged particle multiplicity ratio of gluon to quark jets to be 2.29 +- 0.09 +- 0.15 in agreement with the prediction that this ratio should approximately equal the ratio of QCD color factors, CA/CF = 2.25. The intervals used to define soft particles and large transverse momentum for this result, p<4 GeV/c and 0.8<p_t<3.0 GeV/c, are motivated by the predictions of the Herwig Monte Carlo multihadronic event generator. Additionally, our gluon jet data allow a sensitive test of the phenomenon of non-leading QCD terms known as color reconnection. We test the model of color reconnection implemented in the Ariadne Monte Carlo multihadronic event generator and find it to be disfavored by our data.
(C=GLUON) and (C=QUARK) stand for jets originated from gluon and any light quark (Q=u, d, s), correspondingly. The ratio of gluon to quark jets are evaluated for 40.1 GeV jet energy.
(C=GLUON) and (C=QUARK) stand for jets originated from gluon and any light quark (Q=u, d, s), correspondingly. The ratio of gluon to quark jets are evaluated for 40.1 GeV jet energy.
(C=GLUON) and (C=QUARK) stand for jets originated from gluon and any light quark (Q=u, d, s), correspondingly. The ratio of gluon to quark jets are evaluated for 40.1 GeV jet energy.