Measurement of neutral and charged current cross-sections in positron proton collisions at large momentum transfer

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 13 (2000) 609-639, 2000.
Inspire Record 506029 DOI 10.17182/hepdata.43872

The inclusive single and double differential cross-sections for neutral and charged current processes with four-momentum transfer squared Q^2 between 150 and 30,000 GeV2 and with Bjorken x between 0.0032 and 0.65 are measured in e^+ p collisions. The data were taken with the H1 detector at HERA between 1994 and 1997, and they correspond to an integrated luminosity of 35.6 pb^-1. The Q^2 evolution of the parton densities of the proton is tested, yielding no significant deviation from the prediction of perturbative QCD. The proton structure function F_2(x,Q^2) is determined. An extraction of the u and d quark distributions at high x is presented. At high Q^2 electroweak effects of the heavy bosons Z0 and W are observed and found to be consistent with Standard Model expectation.

7 data tables

The structure function, F2, and the reduced cross section, in NC DIS scattering at Q**2 from 150 to 30000 GeV**2 as a function if x and y. Also tabulated are the QED corrections to the data, which have already been applied. The individual corrections used to calculate F2 from the cross sections are given in the following table.

The various corrections to the cross sections used to calcuate the F2 values given in the previous table. See the text of the paper for more details.

The CC double differential cross section and the structure function term PHI(C=CC) - see text of the paper for details - at Q**2 from 150 to 1 5000 GeV**2 as a function of both x and y. Also tabulated are the QED corrections to the data, which have already been applied.

More…

Measurement of leading proton and neutron production in deep inelastic scattering at HERA.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 6 (1999) 587-602, 1999.
Inspire Record 478983 DOI 10.17182/hepdata.44169

Deep--inelastic scattering events with a leading baryon have been detected by the H1 experiment at HERA using a forward proton spectrometer and a forward neutron calorimeter. Semi--inclusive cross sections have been measured in the kinematic region 2 <= Q^2 <= 50 GeV^2, 6.10^-5 <= x <= 6.10^-3 and baryon p_T <= MeV, for events with a final state proton with energy 580 <= E' <= 740 GeV, or a neutron with energy E' >= 160 GeV. The measurements are used to test production models and factorization hypotheses. A Regge model of leading baryon production which consists of pion, pomeron and secondary reggeon exchanges gives an acceptable description of both semi-inclusive cross sections in the region 0.7 <= E'/E_p <= 0.9, where E_p is the proton beam energy. The leading neutron data are used to estimate for the first time the structure function of the pion at small Bjorken--x.

10 data tables

Semi-inclusive structure function for data with forward proton.

Semi-inclusive structure function for data with forward proton.

Semi-inclusive structure function for data with forward proton.

More…

Inclusive measurement of diffractive deep inelastic ep scattering

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Z.Phys.C 76 (1997) 613-629, 1997.
Inspire Record 447269 DOI 10.17182/hepdata.44502

A measurement is made of the cross section for the process ep --> eXY in deep-inelastic scattering with the H1 detector at HERA. The cross section is presented in terms of a differential structure function F_2^D(3)(x_P,beta,Q^2) of the proton over the kinematic range 4.5 < Q^2 < 75 GeV^2. The dependence of F_2^D(3) on x_P is found to vary with beta, demonstrating that a factorisation of F_2^D(3) with a single diffractive flux independent of beta and Q^2 is not tenable. An interpretation in which a leading diffractive exchange and a subleading reggeon contribute to F_2^D(3) reproduces well the x_P dependence of F_2^D(3) with values for the pomeron and subleading reggeon intercepts of alpha_P(0)=1.203 \pm 0.020(stat.)\pm 0.013(sys.) ^{+0.030}_{-0.035}(model} and alpha_reg(0)=0.50\pm 0.11(stat.)\pm 0.11 (sys.}^{+0.09}_{-0.10} (model), respectively. A fit is performed of the data using a QCD motivated model, in which parton distributions are assigned to the leading and subleading exchanges. In this model, the majority of the momentum of the pomeron must be carried by gluons in order for the data to be well described.

8 data tables

No description provided.

No description provided.

No description provided.

More…

A measurement of the proton structure function F2(x,Q**2) at low x and low Q**2 at HERA.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Nucl.Phys.B 497 (1997) 3-30, 1997.
Inspire Record 441392 DOI 10.17182/hepdata.44625

The results of a measurement of the proton structure function F_2(x,Q~2)and the virtual photon-proton cross section are reported for momentum transfers squared Q~2 between 0.35 GeV~2 and 3.5 GeV~2 and for Bjorken-x values down to 6 10~{-6} using data collected by the HERA experiment H1 in 1995. The data represent an increase in kinematic reach to lower x and Q~2 values of about a factor of 5 compared to previous H1 measurements. Including measurements from fixed target experiments the rise of F_2 with decreasing x is found to be less steep for the lowest Q~2 values measured. Phenomenological models at low Q~2 are compared with the data.

18 data tables

No description provided.

No description provided.

No description provided.

More…

Determination of the longitudinal proton structure function F(L)(x,Q**2) at low x.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Phys.Lett.B 393 (1997) 452-464, 1997.
Inspire Record 426362 DOI 10.17182/hepdata.44694

A measurement of the inclusive cross section for the deep-inelastic scattering of positrons off protons at HERA is presented at momentum transfers $8.5 \leq Q~2 \leq 35 GeV~2$ and large inelasticity $y = 0.7$, i.e. for the Bjorken-x range $0.00013 \leq x \leq 0.00055$. Using a next-to-leading order QCD fit to the structure function F_2 at lower y values, the contribution of F_2 to the measured cross section at high y is calculated and, by subtraction, the longitudinal structure function F_{L} is determined for the first time with an average value of $F_L=0.52 \pm 0.03 (stat)$~ {+0.25}_{-0.22}$ (syst) at $Q~2=15.4 GeV~2$ and $x=0.000243$.

3 data tables

Inclusive cross section scaled by the kinematic factor K given by:. X*Q**4/((2*PI*ALPHA**2)*Y+). Y+=2(1-Y)+Y**2.

F2 values corresponding to the cross section measurements. X*Q**4/((2*PI*ALPHA**2)*Y+). Y+=2(1-Y)+Y**2.

Longitudinal structure function measurements.


Inclusive D0 and D*+- production in neutral current deep inelastic e p scattering at HERA.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Z.Phys.C 72 (1996) 593-605, 1996.
Inspire Record 421105 DOI 10.17182/hepdata.44713

First results on inclusive D0 and D* production in deep inelastic $ep$ scattering are reported using data collected by the H1 experiment at HERA in 1994. Differential cross sections are presented for both channels and are found to agree well with QCD predictions based on the boson gluon fusion process. A charm production cross section for 10GeV$~2\le Q~2\le100$GeV$~2$ and $0.01\le y\le0.7$ of $\sigma\left(ep\rightarrow c\overlinecX\right) = (17.4 \pm 1.6 \pm 1.7 \pm 1.4)$nb is derived. A first measurement of the charm contribution F2_charm(x,Q~2) to the proton structure function for Bjorken $x$ between $8\cdot10~{-4}$ and $8\cdot10~{-3}$ is presented. In this kinematic range a ratio F2_charm/F2= 0.237\pm0.021{+0.043\atop-0.039}$ is observed.

11 data tables

Inclusive D meson production cross sections. The second systematc error represents the model uncertainty.

Inclusive charm meson cross section averaged for the two processes. The second systematc error represents the model uncertainty.

Ratio of cross sections of D0 and D* production.

More…

A Measurement and QCD Analysis of the Proton Structure Function $F_2(x,Q~2)$ at HERA

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Nucl.Phys.B 470 (1996) 3-40, 1996.
Inspire Record 416819 DOI 10.17182/hepdata.44781

A new measurement of the proton structure function $F_2(x,Q~2)$ is reported for momentum transfers squared $Q~2$ between 1.5GeV$~2$ and 5000GeV$~2$ and for Bjorken $x$ between $3\cdot 10~{-5}$ and $0.32$ using data collected by the HERA experiment H1 in 1994. The data represent an increase in statistics by a factor of ten with respect to the analysis of the 1993 data. Substantial extension of the kinematic range towards low $Q~2$ and $x$ has been achieved using dedicated data samples and events with initial state photon radiation. The structure function is found to increase significantly with decreasing $x$, even in the lowest accessible $Q~2$ region. The data are well described by a Next to Leading Order QCD fit and the gluon density is extracted.

26 data tables

Data from shifted vertex sample.

Data from shifted vertex sample.

Data from shifted vertex sample.

More…

The Gluon density of the proton at low x from a QCD analysis of F2

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 354 (1995) 494-505, 1995.
Inspire Record 395814 DOI 10.17182/hepdata.44945

We present a QCD analysis of the proton structure function $F_2$ measured by the H1 experiment at HERA, combined with data from previous fixed target experiments. The gluon density is extracted from the scaling violations of $F_2$ in the range $2\cdot 10~{-4}<x<3\cdot 10~{-2}$ and compared with an approximate solution of the QCD evolution equations. The gluon density is found to rise steeply with decreasing $x$.

3 data tables

No description provided.

No description provided.

No description provided.


First Measurement of the Deep--Inelastic Structure of Proton Diffraction

The H1 collaboration Ahmed, T. ; Aid, S. ; Andreev, V. ; et al.
Phys.Lett.B 348 (1995) 681-696, 1995.
Inspire Record 393286 DOI 10.17182/hepdata.45003

A measurement is presented, using data taken with the H1 detector at HERA, of the contribution of diffractive interactions to deep-inelastic electron-proton scattering. The diffractive contribution to the proton structure function is evaluated as a function of the appropriate deep-inelastic scattering variables using a class of deep-inelastic ep scattering events with no hadronic energy flow in an interval of pseudo-rapidity adjacent to the proton beam direction. The dependence of this contribution on x-pomeron is consistent with both a diffractive interpretation and a factorisable ep diffractive cross section. A first measurement of the deep-inelastic structure of the pomeron in the form of a factorised structure function is presented. This structure function is observed to be consistent with scale invariance.

19 data tables

No description provided.

No description provided.

No description provided.

More…

A Measurement of the proton structure function f2 (x, Q**2)

The H1 collaboration Ahmed, T. ; Aid, S. ; Akhundov, Arif A. ; et al.
Nucl.Phys.B 439 (1995) 471-502, 1995.
Inspire Record 392680 DOI 10.17182/hepdata.45046

A measurement of the proton structure function $F_{\!2}(x,Q~2)$ is reported for momentum transfer squared $Q~2$ between 4.5 $GeV~2$ and 1600 $GeV~2$ and for Bjorken $x$ between $1.8\cdot10~{-4}$ and 0.13 using data collected by the HERA experiment H1 in 1993. It is observed that $F_{\!2}$ increases significantly with decreasing $x$, confirming our previous measurement made with one tenth of the data available in this analysis. The $Q~2$ dependence is approximately logarithmic over the full kinematic range covered. The subsample of deep inelastic events with a large pseudo-rapidity gap in the hadronic energy flow close to the proton remnant is used to measure the "diffractive" contribution to $F_{\!2}$.

20 data tables

No description provided.

No description provided.

No description provided.

More…