The production of (multi-)strange hadrons is measured at midrapidity in proton-proton (pp) collisions at $\sqrt{s} = 13$ TeV as a function of the local charged-particle multiplicity in the pseudorapidity interval ${|\eta|<0.5}$ and of the very-forward energy measured by the ALICE Zero-Degree Calorimeters (ZDC). The latter provides information on the effective energy available for particle production in the collision once subtracted from the centre-of-mass energy. The yields of ${\rm K}^{0}_{\rm{S}}$, $\Lambda+\overline{\Lambda}$, and $\Xi^{-}+\overline{\Xi}^{+}$ per charged-particle increase with the effective energy. In addition, this work exploits a multi-differential approach to decouple the roles of local multiplicity and effective energy in such an enhancement. The results presented in this article provide new insights into the interplay between global properties of the collision, such as the initial available energy in the event, and the locally produced final hadronic state, connected to the charged-particle multiplicity at midrapidity. Notably, a strong increase of strange baryon production with effective energy is observed for fixed charged-particle multiplicity at midrapidity. These results are discussed within the context of existing phenomenological models of hadronisation implemented in different tunes of the PYTHIA 8 event generator.
Self-normalised ZN energy as a function of the self-normalised charged-particle-multiplicity in pp collisions at $\sqrt{s}$ = 13 TeV in the standalone classification (V0M event classes).
Self-normalised ZN energy as a function of the self-normalised charged-particle-multiplicity in pp collisions at $\sqrt{s}$ = 13 TeV in the high-local-multiplicity classification (V0M+SPDClusters event classes).
Self-normalised ZN energy as a function of the self-normalised charged-particle-multiplicity in pp collisions at $\sqrt{s}$ = 13 TeV in the low-local-multiplicity classification (V0M+SPDClusters event classes).
The ALICE Collaboration reports measurements of the semi-inclusive distribution of charged-particle jets recoiling from a high transverse momentum (high $p_{\rm T}$) charged hadron, in pp and central Pb$-$Pb collisions at center-of-mass energy per nucleon$-$nucleon collision $\sqrt{s_{\rm NN}}=5.02$ TeV. The large uncorrelated background in central Pb$-$Pb collisions is corrected using a data-driven statistical approach, which enables precise measurement of recoil jet distributions over a broad range in $p_{\rm T,ch\,jet}$ and jet resolution parameter $R$. Recoil jet yields are reported for $R=0.2$, 0.4, and 0.5 in the range $7 < p_{\rm T,ch\, jet} < 140$ GeV$/c$ and $\pi/2<\Delta\varphi<\pi$, where $\Delta\varphi$ is the azimuthal angular separation between hadron trigger and recoil jet. The low $p_{\rm T,ch\,jet}$ reach of the measurement explores unique phase space for studying jet quenching, the interaction of jets with the quark-gluonnplasma generated in high-energy nuclear collisions. Comparison of $p_{\rm T,ch\,jet}$ distributions from pp and central Pb$-$Pb collisions probes medium-induced jet energy loss and intra-jet broadening, while comparison of their acoplanarity distributions explores in-medium jet scattering and medium response. The measurements are compared to theoretical calculations incorporating jet quenching.
Corrected $\Delta_\mathrm{recoil} (p_\mathrm{T,ch jet})$ distributions measured for $R=$ 0.2, 0.4, and 0.5 in pp collisions at $\sqrt{s}=5.02$ TeV.
Corrected $\Delta_\mathrm{recoil} (p_\mathrm{T,ch jet})$ distributions measured for $R=$ 0.2, 0.4, and 0.5 in Pb--Pb collisions at $\sqrt{s}=5.02$ TeV.
$I_\mathrm{AA} (p_\mathrm{T,ch jet})$ measured for $R=$ 0.2, 0.4, and 0.5 in Pb--Pb collisions at $\sqrt{s}=5.02$ TeV.
The ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high $p_{\rm T}$) hadron trigger in proton$-$proton and central Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV. A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb$-$Pb collisions. Recoil jet distributions are reported for jet resolution parameter $R=0.2$, 0.4, and 0.5 in the range $7 < p_{\rm T,jet} < 140$ GeV$/c$ and trigger$-$recoil jet azimuthal separation $\pi/2 < \Delta\varphi < \pi$. The measurements exhibit a marked medium-induced jet yield enhancement at low $p_{\rm T}$ and at large azimuthal deviation from $\Delta\varphi\sim\pi$. The enhancement is characterized by its dependence on $\Delta\varphi$, which has a slope that differs from zero by 4.7$\sigma$. Comparisons to model calculations incorporating different formulations of jet quenching are reported. These comparisons indicate that the observed yield enhancement arises from the response of the QGP medium to jet propagation.
Corrected $\Delta_\mathrm{recoil} (p_\mathrm{T,ch jet})$ distributions measured for $R=$ 0.2, 0.4, and 0.5 in pp collisions at $\sqrt{s}=5.02$ TeV.
Corrected $\Delta_\mathrm{recoil} (p_\mathrm{T,ch jet})$ distributions measured for $R=$ 0.2, 0.4, and 0.5 in Pb--Pb collisions at $\sqrt{s}=5.02$ TeV.
$I_\mathrm{AA} (p_\mathrm{T,ch jet})$ measured for $R=$ 0.2, 0.4, and 0.5 in Pb--Pb collisions at $\sqrt{s}=5.02$ TeV.
The ALICE Collaboration reports three measurements in ultra-peripheral proton$-$lead collisions at forward rapidity. The exclusive two-photon process \ggmm and the exclusive photoproduction of J/$\psi$ are studied. J/$\psi$ photoproduction with proton dissociation is measured for the first time at a hadron collider. The cross section for the two-photon process of dimuons in the invariant mass range from 1 to 2.5 GeV/$c^2$ agrees with leading order quantum electrodynamics calculations. The exclusive and dissociative cross sections for J/$\psi$ photoproductions are measured for photon$-$proton centre-of-mass energies from 27 to 57 GeV. They are in good agreement with HERA results.
Differential cross sections DSIGMA/DM for exclusive GAMMA* GAMMA* to MU+ MU- production in p–Pb UPCs for each mass and rapidity interval
Exclusive J/psi photoproduction cross section in p-Pb UPC.
Dissociative J/psi photoproduction cross section in p-Pb UPC.
The production cross section of inclusive J/$\psi$ pairs in pp collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV is measured with ALICE. The measurement is performed for J/$\psi$ in the rapidity interval $2.5 < y < 4.0$ and for transverse momentum $p_{\rm T} > 0$. The production cross section of inclusive J/$\psi$ pairs is reported to be $10.3 \pm 2.3 {\rm (stat.)} \pm 1.3 {\rm (syst.)}$ nb in this kinematic interval. The contribution from non-prompt J/$\psi$ (i.e. originated from beauty-hadron decays) to the inclusive sample is evaluated. The results are discussed and compared with data.
Inclusive JPSI pair cross section in $2.5 < y < 4.0$.
Measurements of both the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a $Z$ boson ($t\bar{t}Z$) are presented. The measurements are performed by targeting final states with three or four isolated leptons (electrons or muons) and are based on $\sqrt{s} = 13$ TeV proton-proton collision data with an integrated luminosity of 139 fb$^{-1}$, recorded from 2015 to 2018 with the ATLAS detector at the CERN Large Hadron Collider. The inclusive cross section is measured to be $\sigma_{t\bar{t}Z} = 0.99 \pm 0.05$ (stat.) $\pm 0.08$ (syst.) pb, in agreement with the most precise theoretical predictions. The differential measurements are presented as a function of a number of kinematic variables which probe the kinematics of the $t\bar{t}Z$ system. Both absolute and normalised differential cross-section measurements are performed at particle and parton levels for specific fiducial volumes and are compared with theoretical predictions at different levels of precision, based on a $\chi^{2}/$ndf and $p$-value computation. Overall, good agreement is observed between the unfolded data and the predictions.
The measured $t\bar{t}\text{Z}$ cross-section value and its uncertainty based on the fit results from the combined trilepton and tetralepton channels. The value corresponds to the phase-space region where the difermion mass from the Z boson decay lies in the range $70 < m_{f\bar{f}} < 110$ GeV.
List of relative uncertainties of the measured inclusive $t\bar{t}\text{Z}$ cross section from the combined fit. The uncertainties are symmetrised for presentation and grouped into the categories described in the text. The quadratic sum of the individual uncertainties is not equal to the total uncertainty due to correlations introduced by the fit.
The definitions of the trilepton signal regions: for the inclusive measurement, a combination of the regions with pseudo-continuous $b$-tagging 3$\ell$-Z-1$b$4$j$-PCBT and 3$\ell$-Z-2$b$3$j$-PCBT is used, whereas for the differential measurement, only the region 3$\ell$-Z-2$b$3$j$, with a fixed $b$-tagging WP is employed.
Fiducial and differential measurements of $W^+W^-$ production in events with at least one hadronic jet are presented. These cross-section measurements are sensitive to the properties of electroweak-boson self-interactions and provide a test of perturbative quantum chromodynamics and the electroweak theory. The analysis is performed using proton$-$proton collision data collected at $\sqrt{s}=13~$TeV with the ATLAS experiment, corresponding to an integrated luminosity of 139$~$fb$^{-1}$. Events are selected with exactly one oppositely charged electron$-$muon pair and at least one hadronic jet with a transverse momentum of $p_{\mathrm{T}}>30~$GeV and a pseudorapidity of $|\eta|<4.5$. After subtracting the background contributions and correcting for detector effects, the jet-inclusive $W^+W^-+\ge 1~$jet fiducial cross-section and $W^+W^-+$ jets differential cross-sections with respect to several kinematic variables are measured, thus probing a previously unexplored event topology at the LHC. These measurements include leptonic quantities, such as the lepton transverse momenta and the transverse mass of the $W^+W^-$ system, as well as jet-related observables such as the leading jet transverse momentum and the jet multiplicity. Limits on anomalous triple-gauge-boson couplings are obtained in a phase space where interference between the Standard Model amplitude and the anomalous amplitude is enhanced.
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production.
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production. Overflow events are included in the last bin. The largest observed value is 1168 GeV.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$
A search for the Higgs boson decaying into a photon and a pair of electrons or muons with an invariant mass $m_{\ell\ell} < 30$ GeV is presented. The analysis is performed using 139 fb$^{-1}$ of proton-proton collision data, produced by the LHC at a centre-of-mass energy of 13 TeV and collected by the ATLAS experiment. Evidence for the $H \rightarrow \ell \ell \gamma$ process is found with a significance of 3.2$\sigma$ over the background-only hypothesis, compared to an expected significance of 2.1$\sigma$. The best-fit value of the signal strength parameter, defined as the ratio of the observed signal yield to the one expected in the Standard Model, is $\mu = 1.5 \pm 0.5$. The Higgs boson production cross-section times the $H \rightarrow\ell\ell\gamma$ branching ratio for $m_{\ell\ell} <$ 30 GeV is determined to be 8.7 $^{+2.8}_{-2.7}$ fb.
Number of data events selected in each analysis category in the $m_{\ell\ell\gamma}$ mass range of 110--160 GeV. In addition, the following numbers are given: number of $H\rightarrow\gamma^{*}\gamma\rightarrow \ell\ell\gamma$ events in the smallest $m_{\ell\ell\gamma}$ window containing 90\% of the expected signal ($S_{90}$), the non-resonant background in the same interval ($B_{90}^N$) as estimated from fits to the data sidebands using the background models, the resonant background in the same interval ($B_{H\rightarrow\gamma\gamma}$), the expected signal purity $f_{90} = S_{90}/(S_{90}+B_{90})$, and the expected significance estimate defined as $Z_{90} = \sqrt{ 2( (S_{90}+B_{90})\,\ln(1+S_{90}/B_{90}) - S_{90}) }$ where $B_{90} = B_{90}^N+B_{H\rightarrow\gamma\gamma}$. $B_{H\rightarrow\gamma\gamma}$ is only relevant for the electron categories and is marked as 0 otherwise
The best fit value for the signal yield normalised to the Standard Model prediction (signal strength) for $pp \to H \to Z+\gamma$
Measured $\sigma( p p \rightarrow H) \cdot B(H\rightarrow \ell\ell\gamma)$ for $m_{\ell\ell} < 30$ GeV
Several extensions of the Standard Model predict the production of dark matter particles at the LHC. An uncharted signature of dark matter particles produced in association with $VV=W^\pm W^\mp$ or $ZZ$ pairs from a decay of a dark Higgs boson $s$ is searched for using 139 fb$^{-1}$ of $pp$ collisions recorded by the ATLAS detector at a center-of-mass energy of 13 TeV. The $s\to V(q\bar q)V(q\bar q)$ decays are reconstructed with a novel technique aimed at resolving the dense topology from boosted $VV$ pairs using jets in the calorimeter and tracking information. Dark Higgs scenarios with $m_s > 160$ GeV are excluded.
Data overlaid on SM background post-fit yields stacked in each SR and CR category and E<sub>T</sub><sup>miss</sup> bin with the maximum-likelihood estimators set to the conditional values of the CR-only fit, and propagated to SR and CRs. Pre-fit uncertainties cover differences between the data and pre-fit background prediction.
Dominant sources of uncertainty for three dark Higgs scenarios after the fit to Asimov data generated from the expected values of the maximum-likelihood estimators including predicted signals with m<sub>Z'</sub> = 1 TeV and m<sub>s</sub> of (a) 160 GeV, (b) 235 GeV, and (c) 310 GeV. The uncertainty in the fitted signal yield relative to the theory prediction is presented. Total is the quadrature sum of statistical and total systematic uncertainties, which consider correlations.
The ratios (μ) of the 95% C.L. upper limits on the combined s→ W<sup>±</sup>W<sup>∓</sup> and s→ ZZ cross section to simplified model expectations for the m<sub>Z'</sub>=0.5 TeV scenario, for various m<sub>s</sub> hypotheses. The observed limits (solid line) are consistent with the expectation under the SM-only hypothesis (dashed line) within uncertainties (filled band), except for a small excess for m<sub>s</sub>=160 GeV, discussed in the text.
The observation of forward proton scattering in association with lepton pairs ($e^+e^-+p$ or $\mu^+\mu^-+p$) produced via photon fusion is presented. The scattered proton is detected by the ATLAS Forward Proton spectrometer while the leptons are reconstructed by the central ATLAS detector. Proton-proton collision data recorded in 2017 at a center-of-mass energy of $\sqrt{s} = 13$ TeV are analyzed, corresponding to an integrated luminosity of 14.6 fb$^{-1}$. A total of 57 (123) candidates in the $ee+p$ ($\mu\mu+p$) final state are selected, allowing the background-only hypothesis to be rejected with a significance exceeding five standard deviations in each channel. Proton-tagging techniques are introduced for cross-section measurements in the fiducial detector acceptance, corresponding to $\sigma_{ee+p}$ = 11.0 $\pm$ 2.6 (stat.) $\pm$ 1.2 (syst.) $\pm$ 0.3 (lumi.) fb and $\sigma_{\mu\mu+p}$ = 7.2 $\pm$ 1.6 (stat.) $\pm$ 0.9 (syst.) $\pm$ 0.2 (lumi.) fb in the dielectron and dimuon channel, respectively.
The measured fiducial cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity