We present the measurement of the $p_{\rm T}$-differential production cross section of $ω$ mesons in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at midrapidity by ALICE. In addition, the first measurement of the nuclear modification factor $R_{\text{pPb}}$ for $ω$ mesons at LHC energies is presented, complementing the existing measurements of lighter neutral mesons such as the $π^0$ and $η$. Within the measured $p_{\rm T}$-range, the $R_{\text{pPb}}$ of $ω$ mesons is compatible with no cold nuclear matter effects within the uncertainties, consistent with previous measurements at lower energies. The $ω/π^0$ ratio is presented for both collision systems, showing no collision system dependence within the uncertainties. The comparison to previously published $ω/π^0$ ratios at lower and higher collision energies in pp collisions suggests a decreasing trend of the ratio above $p_{\rm T}=~4 $ GeV/$c$ with increasing collision energy. The data in both collision systems are compared to predictions from PYTHIA, EPOS LHC and DPMJET event generators, revealing significant shortcomings in these models' ability to describe the production of $ω$ mesons.
Differential production cross section of $\omega$ mesons in pp collisions at 5.02 TeV. In addition to the edges of the $p_{\rm T}$ intervals, the table shows the corresponding $p_{\rm T}$ position as described in the publication.
Differential production cross section of $\omega$ mesons in p--Pb collisions at 5.02 TeV. In addition to the edges of the $p_{\rm T}$ intervals, the table shows the corresponding $p_{\rm T}$ position as described in the publication.
Production ratio of $\omega$ to $\pi^{0}$ mesons in pp collisions at 5.02 TeV.
The momentum-differential invariant cross sections of ${π^{0}}$ and $η$ mesons are reported for pp collisions at $\sqrt{s}$ = 13 TeV at midrapidity ($|y|<0.8$). The measurement is performed in a broad transverse-momentum range of $0.2<p_{\rm T}<200$ GeV/$c$ and $0.4 < p_{\rm T} < 60$ GeV/$c$ for the ${π^{0}}$ and $η$, respectively, extending the $p_{\rm T}$ coverage of previous measurements. Transverse-mass-scaling violation of up to 60% at low transverse momentum has been observed, agreeing with measurements at lower collision energies. Transverse Bjorken $x$ ($x_{\rm T}$) scaling of the ${π^{0}}$ cross sections at LHC energies is fulfilled with a power-law exponent of $n = 5.01 \pm 0.05$, consistent with values obtained for charged pions at similar collision energies. The data are compared to predictions from next-to-leading order perturbative QCD calculations, where the ${π^{0}}$ spectrum is best described using the CT18 parton distribution function and the NNFF1.0 or BDSS fragmentation function. Expectations from PYTHIA8 and EPOS LHC overestimate the spectrum for the ${π^{0}}$ and are not able to describe the shape and magnitude of the $η$ spectrum. The charged-particle multiplicity dependent ${π^{0}}$ and $η$ $p_{\rm T}$ spectra show the expected change of the spectral shape, characterized by a flatter slope with increasing multiplicity. This is demonstrated across a broad transverse-momentum range and up to events with a charged-particle multiplicity exceeding five times the mean value in minimum bias collisions. The $η/π^{0}$ ratio depends on the charged-particle multiplicity for $ p_{\rm T} < 4$ GeV/$c$. PYTHIA8 and EPOS LHC qualitatively explain this behavior with an increasing contribution from the feed-down of heavier particles to the ${π^{0}}$ spectrum.
Invariant differential cross section of the $\pi^{0}$ versus transverse momentum for pp collisions at $\sqrt{s}$ = 13 TeV.
Invariant differential cross section of the $\eta$ meson versus transverse momentum for pp collisions at $\sqrt{s}$ = 13 TeV.
The $\eta/\pi^{0}$ ratio as a function of $p_{\rm T}$ for pp collisions at $\sqrt{s}$ = 13 TeV.
The NA24 experiment at CERN investigated inclusive γγ, π0π0, and γπ0 final states in the mass range between 4 and 9 GeV/c2 produced in π−p, π+p, and pp reactions at a c.m.-system energy s=23.7 GeV. The π0π0 cross sections agree well with expectations of the quark-parton model. For γπ0 production in π−p and pp reactions, a clear signal is observed and cross sections are shown. The production of γγ events was observed with a statistical significance of 2.9σ in π−p reactions. The cross section is in agreement with a higher-order QCD prediction.
Cross sections are averaged over the transverse momentum differences up to a value which is 1.10 GeV for all points except the first two which are 0.5 and 0.75 GeV respectively.
No description provided.
Maximum accepted transverse momentum difference of pi0 pair is 1 GeV. Inclusive cross section integrated over the total geometrical acceptance of the detector.
Cross sections for inclusive direct photon production in π−p, π+p, and pp collisions at 300 GeV/c are measured at transverse momenta pT up to 7 GeV/c (xT=0.6). For π−p→γX also the rapidity distribution is presented. The cross-section ratio σ(π−p→γX)/σ(π+p→γX) is found to be 1 at pT=4 GeV/c and rises with increasing pT. This observation signals the occurrence of valence-quark–antiquark annihilation. The results are in good agreement with QCD predictions.
THERE IS ALSO A 1 PCT UNCERTAINTY IN THE PT SCALE AND A 7 PCT UNCERTAINTY IN THE NORMALISATION.
Cross sections for inclusive π0 production at large transverse momentum pT were measured in π−p, π+p, and pp collisions at 300 GeV/c. The cross-section ratio σ(π−p→π0X)/σ(π+p→π0X) was found to be consistent with unity in the pT region of 1 to 5 GeV/c. The cross-section ratio σ(π+p→π0X)/σ(pp→π0X) however is growing with increasing pT and increasing π0 c.m.-system rapidity in agreement with parton-model expectations, where the partons in the pions have on average higher momenta than in the proton.
THERE IS ALSO A 1 PCT UNCERTAINTY IN THE PT SCALE AND A 7 PCT UNCERTAINTY IN THE NORMALISATION.