Using a secondary pion beam from the Argonne Zero Gradient Synchrotron we have studied the process π−p→φn in the region of the cross-section enhancement near kinematic threshold. For incident momenta between 1.6 and 2 GeV/c, we have determined production and decay angular distributions and extrapolated total cross sections from a sample of about 160 φ's above background. The production and decay distributions are consistent with isotropy over this entire incident-momentum range. The extrapolated total cross section varies between 19 and 25 μb.
Axis error includes +- 16/16 contribution (RES-DEF(RES=PHI,BACK=CORRECTED)).
Axis error includes +- 16/16 contribution (RES-DEF(RES=PHI,BACK=CORRECTED)).
We have measured the differential cross sections and Λ polarizations in the reactions π−p→ΛK0 and π−p→ΛK*0 (890) near the backward direction, at 3, 4, 5, and 6 GeV/c. Data equal to several times the world's total sample above 2 GeV/c were recorded. Both reactions are characterized by cross sections falling rapidly with beam momentum, and by large positive Λ polarizations for u′ between 0.0 and 0.6 GeV2. Analysis of π−p→ΛK0 yields an effective Regge trajectory consistent with antishrinkage of the backward peak. Separation into amplitudes of definite-parity-naturality exchange shows the reaction to be dominated by unnatural-parity exchange. The energy behavior of this exchange is, however, not consistent with a single linear baryon Regge trajectory or exchange-degenerate pair of trajectories. An apparent normalization discrepancy between data on π−p→ΛK0 of a CERN-ETH group and other high-statistics data including that of this experiment is discussed.
No description provided.
No description provided.
No description provided.
In a single-arm spectrometer experiment, high-precision measurements of dσdt for π−p, K−p, and p¯p elastic scattering have been made at 8 and 16 GeV/c. The π−p data show rich structure at 8 GeV/c, indicative of strong non-Pomeron contributions, while the 16-GeV/c data are much smoother. For −t≳1 (GeV/c)2 there is a strong s dependence while there is very little for −t<1 (GeV/c)2. For p¯p scattering the forward region is smoothly diffractive for −t<0.4 (GeV/c)2 and shows antishrinkage. The exponential slope parameter b is measured to be 12.36 ± 0.04 (GeV/c)−2 at 8 GeV/c and 11.40 ± 0.04 (GeV/c)−2 at 16 GeV/c. The structure near −t=0.6 (GeV/c)2 seen at lower energies is still obvious at 16 GeV/c. The K−p data show some structure at 8 GeV/c, but can be represented adequately by a quadratic exponential form. At 16 GeV/c the K−p angular distribution shows antishrinkage and lies above the 8-GeV/c cross section for 0.11<−t<0.8 (GeV/c)2.
No description provided.
No description provided.
No description provided.
Cross sections are presented for all final states without strange-particle production. Contributions to single-pion production are found from (i) Δ(1238)π, (ii) ρ+p, (iii) nucleon diffractive dissociation into Nπ, (iv) N*(1688)π+, and (v) "phase space." Processes (i), (ii), and (iii) are studied in some detail taking into account overlaps between the various subchannels.
No description provided.
'JM'.
'JM'. USING DATA WITH 1.12 < M(P PI+) < 1.32 GEV AND COS(P PI DECAY ANGLE IN JACKSON FRAME) < 0.
The total cross section for hadron production by high-energy photons has been measured from a number of nuclei ranging from hydrogen to uranium. Some shadowing is observed at a level considerably less than predicted by conventional vector-meson dominance but consistent with a modified theory. The energy dependence predicted by vectormeson dominance is observed. The shadowing in heavy nuclei shows a smooth transition from electroproduction to photoproduction.
No description provided.
Three- and four-body final states with strange particles are studied in π + p and π − p interactions at 16 GeV/ c . We present cross sections and investigate their energy dependence. Production mechanism, resonance production and quantum number transfer are discussed. Strong Y ∗ (1385) production is found in the reaction π + p → Λ K + π + , while the corresponding π − p reaction is dominated by production of K ∗ (890). In the NK K π channels, the K and K are produced mainly at the same vertex, i.e. non-strangeness exchange ΔS = 0 is dominant (about 75% of the cases), whereas in the Λ K ππ channels, the Λ and K are more frequently produced at opposite vertices, i.e. | ΔS | = 1 exchange is important (about 60% of the cases). Results on the polarization of the lambdas produced in the π + p reactions are given.
No description provided.
The reactions π + p giving π 0 Δ ++ (1236), η (549) Δ ++ (1236) and η ′(958) Δ ++ (1236) are studied at 16 GeV/ c . Cross sections, differential cross sections and Δ ++ (1236) spin density matrix elements are presented. The π 0 Δ ++ (1236) differential cross section d σ d t′ indicates a dip towards t ′ = 0 and has a minimum at t ′ ≅ 0.6 GeV 2 . The Δ ++ (1236) spin density matrix elements are consistent with the predictions of the Stodolsky-Sakurai model, except perhaps near the forward direction. For ηΔ ++ (1236), the differential cross section d σ d t′ turns over in the forward direction and presents no further structure. SU(3) sum rules are tested and found to be approximately satisfied. The data agree with factorization of ϱ exchange. The effective A 2 trajectory is calculated and found to be consistent with that reported from the reaction π − p → η n.
No description provided.
NORMALIZED TO THE TOTAL CROSS SECTION OF 49 MUB.
No description provided.
The inclusive cross section and the average multiplicity are evaluated for most of the charged ( π ± , p, K ± ) and neutral (γ, π 0 , K 0 , K 0 , Λ, Λ , n ) particles produced in 32 GeV/ c K − p interactions; corresponding results are obtained for each charged topology separately. New results are given for the total charged multiplicity cross sections. The average longitudinal momentum of neutrals is found to be roughly equal to that of charged particles. The π + and π − multiplicity distributions are reconstructed and compared to the π 0 and to the total charged multiplicity distributions.
No description provided.
Axis error includes +- 30/30 contribution (SYSTEMATIC ERROR FOR K0 MULTIPLICITY, WHICH IS EVALUATED FROM 2 ASSUMPTIONS: ALL K0'S COME FROM THE FINAL STATES (N K 2AK PIONS) OR (LAMBDA/SIGMA K AK PIONS) AND CHARGE DISTRIBUTION IN THESE FINAL STATES OBEYS A STATISTICAL ISOSPIN MODEL OF F.CERULUS,NC 19, 528. ALSO ASSUMED THAT SIG(K+)=SIG(KO). VALUES OF SIG(XI-) AND RATIOS SIG(SIGMA+)/SIG(LAMBDA), SIG(SIGMA-)/SIG(LAMBDA) ARE TAKEN FROM 14.3 GEV EXPERIMENT LOUEDEC 76,NC 41A, 166, STATISTICAL ERRORS BEING DOUBLED. FOR ALL ANTIBARYONS ASSUMED THAT SIG(ANTIBARYON)/SIG(BARYON)=SIG(ANTILAMBDA)/SIG(LAMBDA) =0.046+-0.020. SLOW PROTONS WITH PLAB < 1.2 GEV/C ARE IDENTIFIED, AN ESTIMATE FOR FAST PROTON PRODUCTION IS TAKEN FROM FACCINI 77,NP B127, 109).
Axis error includes +- 30/30 contribution (SYSTEMATIC ERROR FOR K0 MULTIPLICITY, WHICH IS EVALUATED FROM 2 ASSUMPTIONS: ALL K0'S COME FROM THE FINAL STATES (N K 2AK PIONS) OR (LAMBDA/SIGMA K AK PIONS) AND CHARGE DISTRIBUTION IN THESE FINAL STATES OBEYS A STATISTICAL ISOSPIN MODEL OF F.CERULUS,NC 19, 528. ALSO ASSUMED THAT SIG(K+)=SIG(KO). VALUES OF SIG(XI-) AND RATIOS SIG(SIGMA+)/SIG(LAMBDA), SIG(SIGMA-)/SIG(LAMBDA) ARE TAKEN FROM 14.3 GEV EXPERIMENT LOUEDEC 76,NC 41A, 166, STATISTICAL ERRORS BEING DOUBLED. FOR ALL ANTIBARYONS ASSUMED THAT SIG(ANTIBARYON)/SIG(BARYON)=SIG(ANTILAMBDA)/SIG(LAMBDA) =0.046+-0.020. SLOW PROTONS WITH PLAB < 1.2 GEV/C ARE IDENTIFIED, AN ESTIMATE FOR FAST PROTON PRODUCTION IS TAKEN FROM FACCINI 77,NP B127, 109).
From an experiment done with the CERN Omega spectrometer, triggered by a fast forward proton device, we present results on the differential cross section d σ d u for π − p backward elastic scattering. The d σ d u distribution agrees with an A e Bu law. The compilation of existing results shows a discrepancy between results but the ( d σ d u ) u=0 data fit perfectly an s 2 α 0 −2 dependence, as predicted by a single Δδ Regge trajectory exchange. A search for the reaction π − p → d p , with a fast forward deuteron, which can be produced by a double-baryon exchange mechanism, gives cross-section upper limits of ∼1% of the backward elastic cross section.
UMIN IS 0.0446 GEV**2.
UMIN IS 0.0333 GEV**2.
D(SIG)/DU FITTED FOR 0 < -U < 0.75 GEV**2 TO GIVE SLOPE/INTERCEPT.
Inclusive spectra are presented for π± production in 100-GeV/cp¯p interactions. The rapidity distribution for the difference (p¯p−pp) approximately scales as the difference in total cross sections in the fragmentation region between 12 and 100 GeV/c and exhibits an approximate s−12dependence in the central region.
No description provided.
No description provided.