The cross section for e+e- to pi+ pi- psi(2S) between threshold and \sqrt{s}=5.5 GeV is measured using 673 fb^{-1} of data on and off the \Upsilon(4S) resonance collected with the Belle detector at KEKB. Two resonant structures are observed in the pi+ pi- psi(2S) invariant mass distribution, one at 4361\pm 9\pm 9 MeV/c2 with a width of 74\pm 15\pm 10 MeV/c2, and another at 4664\pm 11\pm 5 MeV/c2 with a width of 48\pm 15\pm 3 MeV/c2, if the mass spectrum is parameterized with the coherent sum of two Breit-Wigner functions. These values do not match those of any of the known charmonium states.
Measured cross section.
The cross section for e^+e^- to pi^+pi^-J/psi between 3.8 and 5.5 GeV/c^2 is measured using a 548 fb^{-1} data sample collected on or near the Upsilon(4S) resonance with the Belle detector at KEKB. A peak near 4.25 GeV/c^2, corresponding to the so called Y(4260), is observed. In addition, there is another cluster of events at around 4.05 GeV/c^2. A fit using two interfering Breit-Wigner shapes describes the data better than one that uses only the Y(4260), especially for the lower mass side of the 4.25 GeV enhancement.
Measured cross section. Statistical errors only.
Using the data sets of 17.3 pb$^{-1}$ collected at $\sqrt{s}=$ 3.773 GeV and 6.5 pb$^{-1}$ collected at $\sqrt{s}=$ 3.650 GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 18 exclusive light hadron final states produced in $e^+e^-$ annihilation at the two energy points.
Observed cross sections.
Differential cross sections for the reaction $\gamma p \to p \pi^0$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.
Differential cross section for indicent photon energy 675 MeV.
Differential cross section for indicent photon energy 725 MeV.
Differential cross section for indicent photon energy 775 MeV.
The pp -> p K+ Y0 reaction has been studied for hyperon masses m(Y0)<1540 MeV/c2 at COSY-J\'ulich by using a 3.65 GeV/c circulating proton beam incident on an internal hydrogen target. Final states comprising two protons, one positively charged kaon and one negatively charged pion have been identified with the ANKE spectrometer. Such configurations are sensitive to the production of the ground state Lambda and Sigma0 hyperons as well as the Sigma0(1385) and Lambda(1405) resonances. Applying invariant- and missing-mass techniques, the two overlapping excited states can be separated unambiguously. The shape and position of the Lambda(1405) distribution, reconstructed cleanly from its Sigma0 pion0 decay, are similar to those found in other production modes and there is no obvious mass shift. This finding constitutes a challenging test for models that predict Lambda(1405) to be a two-state resonance.
Cross section for SIGMA(1385)0 production.
Cross section for LAMBDA(1405) production.
Differential and total cross-sections for photoproduction of gamma proton to proton pi0 omega and gamma proton to Delta+ omega were determined from measurements of the CB-ELSA experiment, performed at the electron accelerator ELSA in Bonn. The measurements covered the photon energy range from the production threshold up to 3GeV.
Differential cross section as a function of the OMEGA angle.
Differential cross section as a function of the OMEGA angle.
Differential cross section as a function of the PI0 angle.
We study the processes $e^+ e^-\to K^+ K^- \pi^+\pi^-\gamma$, $K^+K^-\pi^0\pi^0\gamma$ and $K^+ K^- K^+ K^-\gamma$, where the photon is radiated from the initial state. About 34600, 4400 and 2300 fully reconstructed events, respectively, are selected from 232 \invfb of \babar data. The invariant mass of the hadronic final state defines the effective \epem center-of-mass energy, so that the $K^+ K^- \pi^+\pi^-\gamma$ data can be compared with direct measurements of the $e^+ e^-\to K^+K^- \pipi$ reaction/ no direct measurements exist for the $e^+ e^-\to K^+ K^- \pi^0\pi^0$ or $\epem\to K^+ K^- K^+ K^-$ reactions. Studying the structure of these events, we find contributions from a number of intermediate states, and we extract their cross sections where possible. In particular, we isolate the contribution from $e^+ e^-\to\phi(1020) f_{0}(980)$ and study its structure near threshold. In the charmonium region, we observe the $J/\psi$ in all three final states and several intermediate states, as well as the $\psi(2S)$ in some modes, and measure the corresponding branching fractions. We see no signal for the Y(4260) and obtain an upper limit of $\BR_{Y(4260)\to\phi\pi^+\pi^-}\cdot\Gamma^{Y}_{ee}<0.4 \ev$ at 90% C.L.
Measurement of the E+ E- --> K+ K- PI+ PI- cross section. Statistical errors only.
Measurement of the E+ E- --> K(892)0 K PI cross section. Statistical errors only.
Measurement of the E+ E- --> PHI PI+ PI- cross section. Statistical errors only.
Inclusive <math altimg="si2.gif" display="inline" overflow="scroll"><msup><mi>K</mi><mo>+</mo></msup></math> production in proton–proton collisions has been measured at a beam energy of 2.16 GeV using the COSY-ANKE magnetic spectrometer. The resulting spectrum, as well as those corresponding to <math altimg="si3.gif" display="inline" overflow="scroll"><msup><mi>K</mi><mo>+</mo></msup><mi>p</mi></math> and <math altimg="si4.gif" display="inline" overflow="scroll"><msup><mi>K</mi><mo>+</mo></msup><msup><mi>π</mi><mo>+</mo></msup></math> correlated pairs, can all be well described using consistent values of the total cross sections for the <math altimg="si5.gif" display="inline" overflow="scroll"><mi>p</mi><mi>p</mi><mo>→</mo><msup><mi>K</mi><mo>+</mo></msup><mi>p</mi><mi>Λ</mi></math>, <math altimg="si6.gif" display="inline" overflow="scroll"><mi>p</mi><mi>p</mi><mo>→</mo><msup><mi>K</mi><mo>+</mo></msup><mi>p</mi><msup><mi>Σ</mi><mn>0</mn></msup></math>, and <math altimg="si7.gif" display="inline" overflow="scroll"><mi>p</mi><mi>p</mi><mo>→</mo><msup><mi>K</mi><mo>+</mo></msup><mi>n</mi><msup><mi>Σ</mi><mo>+</mo></msup></math> reactions. While the resulting values for Λ and <math altimg="si8.gif" display="inline" overflow="scroll"><msup><mi>Σ</mi><mn>0</mn></msup></math> production are in good agreement with world data, our value for the total <math altimg="si9.gif" display="inline" overflow="scroll"><msup><mi>Σ</mi><mo>+</mo></msup></math> production cross section, <math altimg="si10.gif" display="inline" overflow="scroll"><mi>σ</mi><mo stretchy="false">(</mo><mi>p</mi><mi>p</mi><mo>→</mo><msup><mi>K</mi><mo>+</mo></msup><mi>n</mi><msup><mi>Σ</mi><mo>+</mo></msup><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mn>2.5</mn><mo>±</mo><msub><mn>0.6</mn><mi mathvariant="normal">stat</mi></msub><mo>±</mo><msub><mn>0.4</mn><mi mathvariant="normal">syst</mi></msub><mo stretchy="false">)</mo><mtext> μb</mtext></math> at an excess energy of <math altimg="si11.gif" display="inline" overflow="scroll"><mi>ε</mi><mo>=</mo><mn>129</mn><mtext> MeV</mtext></math>, could only be reconciled with other recently published data if there were a highly unusual near threshold behaviour.
Total cross section for the reaction P P --> K+ N SIGMA+.
Total cross section for the reaction P P --> K+ P LAMBDA.
Total cross section for the reaction P P --> K+ P SIGMA0.
The reaction $ pp\to pp\bf \omega$ was investigated with the TOF spectrometer, which is an external experiment at the accelerator COSY (Forschungszentrum Julich, Germany). Total as well as differential cross sections were determined at an excess energy of $93 MeV$ ($p_{beam}=2950 MeV/c$). Using the total cross section of $(9.0\pm 0.7 \pm1.1) \mu b$ for the reaction $ pp\to pp\omega$ determined here and existing data for the reaction $pp\to pp\bf \phi$, the ratio $\mathcal{R}_{\phi/\omega}=\sigma_\phi/\sigma_\omega$ turns out to be significantly larger than expected by the Okubo-Zweig-Iizuka (OZI) rule. The uncertainty of this ratio is considerably smaller than in previous determinations. The differential distributions show that the $\omega$ production is still dominated by S-wave production at this excess energy, however higher partial waves clearly contribute. A comparison of the measured angular distributions for $\omega$ production to published distributions for $\phi$ production at $83 MeV$ shows that the data are consistent with an identical production mechanism for both vector mesons.
Total cross section after acceptance correction and normalization.
Differential cross section as a function of the cosine of the polar angle of the protons in the overall c.m. system.
Differential cross section as a function of the omega meson angle in the overall c.m. system.
Photoproduction of the cascade resonances has been investigated in the reactions $\gamma p \to K^+ K^+ (X)$ and $\gamma p \to K^+ K^+ \pi^- (X)$. The mass split of the $\Xi$ doublet is measured to be $5.4\pm 1.8$ MeV/c$^2$, consistent with existing measurements. The differential (total) cross sections for the $\Xi^{-}$ have been determined for photon beam energies from 2.75 to 3.85 (4.75) GeV, and are consistent with a possible production mechanism of $Y^*\to K^+\Xi^-$ through a $t$-channel process. The reaction $\gamma p \to K^+ K^+ \pi^-[\Xi^0]$ has also been investigated in search of excited cascade resonances. No significant signal of excited cascade states other than the $\Xi^-(1530)$ is observed. The cross section results of the $\Xi^-(1530)$ have also been obtained for photon beam energies from 3.35 to 4.75 GeV.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.79 Gev.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.89 Gev.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.99 Gev.