This paper reports the measurement of the B meson and b quark cross sections through the decay chain B0→J/ψ K*(892)0, J/ψ→μ+μ−, K*(892)0→K+π−, using 4.3 pb−1 of data collected at the Collider Detector at Fermilab in p¯p collisions at qrts=1.8 TeV. We obtain σB=1.5±0.7(stat)±0.6(syst) μb for B0 mesons with transverse momentum PT>9.0 GeV/c and rapidity ‖y‖<1.0. Using this result, we find σb=3.7±1.6(stat)±1.5(syst) μb for b quarks with PT>11.5 GeV/c and rapidity ‖y‖<1.0. The b quark cross section is compared to next-to-leading order QCD calculations and previous measurements.
B0 meson cross section.
Bquark cross section.
We present the first measurement of the left-right asymmetry in Bhabha scattering with a polarized electron beam. The effective electron vector and axial vector couplings to the Z0 are extracted from a combined analysis of the polarized Bhabha scattering data and the left-right asymmetry previously published by this collaboration.
No description provided.
The strong coupling alpha_s(M_Z^2) has been measured using hadronic decays of Z^0 bosons collected by the SLD experiment at SLAC. The data were compared with QCD predictions both at fixed order, O(alpha_s^2), and including resummed analytic formulae based on the next-to-leading logarithm approximation. In this comprehensive analysis we studied event shapes, jet rates, particle correlations, and angular energy flow, and checked the consistency between alpha_s(M_Z^2) values extracted from these different measures. Combining all results we obtain alpha_s(M_Z^2) = 0.1200 \pm 0.0025(exp.) \pm 0.0078(theor.), where the dominant uncertainty is from uncalculated higher order contributions.
Final average value of alpha_s. The second (DSYS) error is from the uncertainty on the theoretical part of the calculation.
TAU is 1-THRUST.
RHO is the normalized heavy jet mass MH**2/EVIS**2.
The production of B ∗ mesons in Z decays has been measured at LEP with the L3 detector. A sample of Z → b b events was obtained by tagging muons in 1.6 million hadronic Z decays collected in 1991, 1992 and 1993. A signal with a peak value of E γ = 46.3 ± 1.9 (stat) MeV in the B rest frame energy spectrum was interpreted to come from the decay B ∗ → γB. The inclusive production ratio of B ∗ mesons relative to B mesons was determined from a fit to the spectrum to be N B ∗ (N B ∗ + N B ) = 0.76 ± 0.08 ± 0.06 , where the first error is statistical and the second is systematic.
No description provided.
The charge asymmetry has been measured using $19,039W$ decays recorded by the CDF detector during the 1992-93 run of the Tevatron Collider. The asymmetry is sensitive to the ratio of $d$ and $u$ quark distributions to $x<0.01$ at $Q~2 \approx M_W~2$, where nonperturbative effects are minimal. It is found that of the two current sets of parton distributions, those of Martin, Roberts and Stirling (MRS) are favored over the sets most recently produced by the CTEQ collaboration. The $W$ asymmetry data provide a stronger constraints on $d/u$ ratio than the recent measurements of $F_2~{\mu n}/F_2~{\mu p}$ which are limited by uncertainties originating from deutron corrections.
Charge asymmetry defined as (DSIG(Q=L+)/DYRAP - DSIG(Q=L-)/DYRAP)/ (DSIG(Q=L+)/DYRAP + DSIG(Q=L-)/DYRAP). Here LEPTON are E and MU.
None
No description provided.
We have searched for signatures of polarization in hadronic jets from $Z~0 \rightarrow q \bar{q}$ decays using the ``jet handedness'' method. The polar angle asymmetry induced by the high SLC electron-beam polarization was used to separate quark jets from antiquark jets, expected to be left- and right-polarized, respectively. We find no evidence for jet handedness in our global sample or in a sample of light quark jets and we set upper limits at the 95\% C.L. of 0.063 and 0.099 respectively on the magnitude of the analyzing power of the method proposed by Efremov {\it et al.}
Polarized E- beam. Events were classified as being of light or heavy flavors based on impact parameters of charged tracks measured in the vertex detector. Jet handedness are measured for helicity-based and chirality-based analysis (seetext). C=95PCT CL indicates the upper limits at the 95 PCT C.L. on the magnitudes.
We report on a study of W+ photon production in approximately 20 pb−1 of p−p¯ collisions at s=1.8 TeV recorded with the Collider Detector at Fermilab. Our results are in good agreement with standard model expectations and are used to obtain limits on anomalous CP-conserving WWγ couplings of −2.3<Δκ<2.2 for λ=0 and −0.7<λ<0.7 for Δκ=0 at 95% C.L. We obtain the same limits for CP-violating couplings. These results provide limits on the higher-order electromagnetic moments of the W boson of 0.8<gW<3.1 for qWe=1 and −0.6<qWe<2.7 for gW=2 at 95% C.L.
E + MU combined. Limits on CP-conserving anomalous WWGAMMA couplings DELTA(K) and LAMBDA (see paper).
We present a study of J ψ meson production in collisions of 26.7 GeV electrons with 820 GeV protons, performed with the H1-detector at the HERA collider at DESY. The J ψ mesons are detected via their leptonic decays both to electrons and muons. Requiring exactly two particles in the detector, a cross section of σ(ep → J ψ X) = (8.8±2.0±2.2) nb is determined for 30 GeV ≤ W γp ≤ 180 GeV and Q 2 ≲ 4 GeV 2 . Using the flux of quasi-real photons with Q 2 ≲ 4 GeV 2 , a total production cross section of σ ( γp → J / ψX ) = (56±13±14) nb is derived at an average W γp =90 GeV. The distribution of the squared momentum transfer t from the proton to the J ψ can be fitted using an exponential exp(− b ∥ t ∥) below a ∥ t ∥ of 0.75 GeV 2 yielding a slope parameter of b = (4.7±1.9) GeV −2 .
No description provided.
No description provided.
QED background subtracted.
A prompt photon cross section measurement from the Collider Detector at Fermilab experiment is presented. Detector and trigger upgrades, as well as 6 times the integrated luminosity compared with our previous publication, have contributed to a much more precise measurement and extended PT range. As before, QCD calculations agree qualitatively with the measured cross section, but the data has a steeper slope than the calculations.
Note that the sytematic uncertainties are approximately 100 pct correlated bin to bin.