Inelastic scattering of 490 GeV μ + from deuterium and xenon nuclei has been studied for x Bj > s .001. The ratio of the xenon/deuterium cross section per nucleon is observed to vary with x Bj , with a depletion in the kinematic range 0.001 < x Bj < 0.025 which exhibits no significant Q 2 dependence. An electromagnetic calorimeter was used to verify the radiative corrections.
Xenon structure function parameterized as being equal to the DEUT structurefunction.
Xenon structure function parameterized by an x-dependent shadowing factor times the DEUT structure function.
Longitudinal and transverse momentum spectra of final state hadrons produced in deep-inelastic muon-deuterium scattering at incident muon energy of 490 GeV have been measured up to a hadronic center of mass energy of 30 GeV. The longitudinal distributions agree well with data from earlier muon-nucleon scattering experiments; these distributions tend to increase in steepness as the center of mass energy increases. Comparisons with e + e − data at comparable center of mass energies indicate slight differences. The transverse momentum distributions show an increase in mean $p_T^2$ with an increase in the center of mass energy.
No description provided.
No description provided.
No description provided.
The deep-inelastic scattering reaction νμN→μ−X has been studied using the deuterium-filled 15-foot bubble chamber at Fermilab. The data have been analyzed under the assumption of isospin invariance to extract x(uV-dV) for the proton, where xuV(x) and xdV(x) are the valence up- and down-quark momentum distributions, respectively. The results are compared with other data and with different theoretical fits. The ratio νn/νp as a function of x is also presented.
No description provided.
No description provided.
No description provided.
None
Axis error includes +- 3/3 contribution (ERROR IN EFFICIENCY).
From 12000 charged-current νμ D events obtained in an exposure of the Fermilab 15-ft bubble chamber to a high-energy wide-band neutrino beam, the absolute neutrino flux is determined using the reaction νμn→μ−p. For the total charged-current cross section, σt=kEν, k=(0.68±0.04±0.10)×10−38 cm2/GeV is obtained for Eν between 10 and 200 GeV. No clear energy dependence of the slope parameter k is observed.
No description provided.
We present a study of antineutrino interactions in hydrogen obtained in a 138000-picture run at the BNL 7-ft bubble chamber. The antineutrino beam had an energy distribution that peaked at ∼1.1 GeV. The cross section measured for charged-current interactions is σ(ν¯p→μ++anything)=(0.32±0.08)×10−38×[Eν¯ (GeV)] cm2. The neutral-current cross section is σ(ν¯p→ν¯pπ+π−)=5.5−2.6+4.4×10−40 cm2. The ratio of strangeness-changing to non-strangeness-changing charged currents is Rs=0.06−0.05+0.13. An upper limit determined for charm production is σc<3.8×10−40 cm2 at the 90% confidence level. From the momentum-transfer distribution we measure average Q2 for inelastic charged-current events with energy greater than 2 GeV, 〈Q2〉=(0.10±0.03)[Eν¯ (GeV)]+(0.10±0.09) (GeV/c)2. Using a maximum-likelihood method we determine from the quasielastic events ν¯p→μ+n an axial-vector mass MA=0.9−0.3+0.4 GeV/c2.
Measured charged current total cross section.