We present data from a spark-chamber study of K+p elastic scattering between 432 and 939 MeV/c, over the range −0.6<cosθc.m.<+0.7. With measurements at 13 momenta, and between 2000 events at the lowest momentum and 5000 events at the highest momentum, there is a major improvement over previous data. The elastic cross sections deduced from the differential cross sections are almost independent of momentum through the range covered. The data are inconsistent with counter measurements of the total cross section which suggest a sharp shoulder in the cross section at about 700 MeV/c.
No description provided.
No description provided.
No description provided.
Measurements of K + p elastic scattering have been carried out at 13 momenta between 432 MeV/ c and 939 MeV/ c using spark chambers. The data establish unambiguously the constructive interference of the Coulomb and nuclear amplitudes at 432 MeV/ c . The elastic cross section is found to be independent of momentum through the range covered. The phase shifts for S, P, D and F waves are obtained in an energy dependent analysis in which higher waves are held at theoretical values. The initial behaviour ofthe P, D and F amplitudes is quite close to that predicted by the calculation of the peripheral partial waves. Only the P3 and D5 amplitudes become strikingly different with increasing momentum.
COULOMB INTERFERENCE EFFECT SEEN AT SMALL ANGLES.
No description provided.
No description provided.
Elastik K − n ( I = 1) differential cross sections have been measured at 14 momenta between 610 and 940 MeV/ c , over the c.m. angular range −0.7 < cos θ ∗ < 0.8 . The results, which cover the c.m. energy range 1610–1765 MeV, have been fitted with Legendre polynomials and compared with some existing predictions from a partial-wave analysis.
No description provided.
No description provided.
SEMI-INCLUSIVE CROSS SECTION.
Measurements of K − p elastic scattering have been carried out at 14 momenta between 610 MeV/ c and 943 MeV/ c over the angular range −0.9 < cos θ < 0.9. The results agree well with the best existing data and have significantly smaller errors.
No description provided.
DIFFERENTIAL CROSS SECTION AT 0 DEG CALCULATED FROM DISPERSION RELATIONS AND AT 180 DEG INTERPOLATED FROM BUBBLE CHAMBER MEASUREMENTS.
LEGENDRE POLYNOMIAL FIT, INCLUDING FORWARD AND BACKWARD POINTS.
Elastic and charge-exchange K + n differential cross sections have been measured from K + d interactions from 430 to 940 MeV/ c using spark chambers and scintillation counters. The data have been compared with existing results and in an accompanying paper have been included with other measurements in a phase-shift analysis.
DEUTERIUM TARGET.
NOTE COHERENT ELASTIC SCATTERING ON DEUTERIUM AT FORWARD ANGLES (-T < 0.13 GEV**2) REDUCES THE CROSS SECTION COMPARED WITH FREE NUCLEON ELASTIC SCATTERING.
NOTE COHERENT ELASTIC SCATTERING ON DEUTERIUM AT FORWARD ANGLES (-T < 0.13 GEV**2) REDUCES THE CROSS SECTION COMPARED WITH FREE NUCLEON ELASTIC SCATTERING.
The electroproduction of π0 on the proton was measured from 0 to 2.5 MeV above threshold for virtual-photon 4-momenta of -0.05 and -0.1 (GeV/c)2. The sum of the lowest-order contributing multipoles, a0=‖E0+‖2-εL‖L0+‖2, was determined with a precision an order of magnitude better than previously possible. Our results for a0 are consistent with present calculations. Our extracted value for ‖L0+‖2 at the ‘‘photon point’’ is in agreement with recent predictions.
Joined statistics for two incident electron energy of 300 and 500 MeV.
Based on a data sample of 10 billion $J/\psi$ events collected with the BESIII detector, improved measurements of the Dalitz decays $\eta/\eta'\rightarrow\gamma e^+e^-$ are performed, where the $\eta$ and $\eta'$ are produced through the radiative decays $J/\psi\rightarrow\gamma \eta/\eta'$. The branching fractions of $\eta\rightarrow\gamma e^+e^-$ and $\eta'\rightarrow\gamma e^+e^-$ are measured to be $(7.07 \pm 0.05 \pm 0.23)\times10^{-3}$ and $(4.83\pm0.07\pm0.14)\times10^{-4}$, respectively. Within the single pole model, the parameter of electromagnetic transition form factor for $\eta\rightarrow\gamma e^+e^-$ is determined to be $\Lambda_{\eta}=(0.749 \pm 0.027 \pm 0.007)~ {\rm GeV}/c^{2}$. Within the multi-pole model, we extract the electromagnetic transition form factors for $\eta'\rightarrow\gamma e^+e^-$ to be $\Lambda_{\eta'} = (0.802 \pm 0.007\pm 0.008)~ {\rm GeV}/c^{2}$ and $\gamma_{\eta'} = (0.113\pm0.010\pm0.002)~ {\rm GeV}/c^{2}$. The results are consistent with both theoretical predictions and previous measurements. The characteristic sizes of the interaction regions for the $\eta$ and $\eta'$ are calculated to be $(0.645 \pm 0.023 \pm 0.007 )~ {\rm fm}$ and $(0.596 \pm 0.005 \pm 0.006)~ {\rm fm}$, respectively. In addition, we search for the dark photon in $\eta/\eta^\prime\rightarrow\gamma e^{+}e^{-}$, and the upper limits of the branching fractions as a function of the dark photon are given at 90% confidence level.
The process e+e- --> pi+ pi- pi0 gamma has been studied at a center-of-mass energy near the Y(4S) resonance using a 89.3 fb-1 data sample collected with the BaBar detector at the PEP-II collider. From the measured 3pi mass spectrum we have obtained the products of branching fractions for the omega and phi mesons, B(omega --> e+e-)B(omega --> 3pi)=(6.70 +/- 0.06 +/- 0.27)10-5 and B(phi --> e+e-)B(phi --> 3pi)=(4.30 +/- 0.08 +/- 0.21)10-5, and evaluated the e+e- --> pi+ pi- pi0 cross section for the e+e- center-of-mass energy range 1.05 to 3.00 GeV. About 900 e+e- --> J/psi gamma --> pi+ pi- pi0 gamma events have been selected and the branching fraction B(J/psi --> pi+ pi- pi0)=(2.18 +/- 0.19)% has been measured.
Using data collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider, we measure the energy dependence of the $e^+e^- \to h_b(nP)\pi^+\pi^-$ $(n=1,2)$ cross sections from thresholds up to $11.02\,$GeV. We find clear $\Upsilon(10860)$ and $\Upsilon(11020)$ peaks with little or no continuum contribution. We study the resonant substructure of the $\Upsilon(11020) \to h_b(nP)\pi^+\pi^-$ transitions and find evidence that they proceed entirely via the intermediate isovector states $Z_b(10610)$ and $Z_b(10650)$. The relative fraction of these states is loosely constrained by the current data: the hypothesis that only $Z_b(10610)$ is produced is excluded at the level of 3.3 standard deviations, while the hypothesis that only $Z_b(10650)$ is produced is not excluded at a significant level.
Using 2917 $\rm{pb}^{-1}$ of data accumulated at 3.773~$\rm{GeV}$, 44.5~$\rm{pb}^{-1}$ of data accumulated at 3.65~$\rm{GeV}$ and data accumulated during a $\psi(3770)$ line-shape scan with the BESIII detector, the reaction $e^+e^-\rightarrow p\bar{p}$ is studied considering a possible interference between resonant and continuum amplitudes. The cross section of $e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}$, $\sigma(e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p})$, is found to have two solutions, determined to be ($0.059\pm0.032\pm0.012$) pb with the phase angle $\phi = (255.8\pm37.9\pm4.8)^\circ$ ($<$0.11 pb at the 90% confidence level), or $\sigma(e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}) = (2.57\pm0.12\pm0.12$) pb with $\phi = (266.9\pm6.1\pm0.9)^\circ$ both of which agree with a destructive interference. Using the obtained cross section of $\psi(3770)\rightarrow p\bar{p}$, the cross section of $p\bar{p}\rightarrow \psi(3770)$, which is useful information for the future PANDA experiment, is estimated to be either ($9.8\pm5.7$) nb ($<17.2$ nb at 90% C.L.) or $(425.6\pm42.9)$ nb.