Using 106 000 hadronic events obtained with the ALEPH detector at LEP at energies close to the Z resonance peak, the strong coupling constant α s is measured by an analysis of energy-energy correlations (EEC) and the global event shape variables thrust, C -parameter and oblateness. It is shown that the theoretical uncertainties can be significantly reduced if the final state particles are first combined in clusters using a minimum scaled invariant mass cut, Y cut , before these variables are computed. The combined result from all shape variables of pre-clustered events is α s ( M Z 2 = 0.117±0.005 for a renormalization scale μ= 1 2 M Z . For μ values between M Z and the b-quark mass, the result changes by −0.009 +0.006 .
No description provided.
Error contains both experimental and theoretical errors.
The inclusive jet cross-section has been measured at the CERN p p Collider ( s = 630 GeV ) as a function of the jet transverse momentum ( p T ) and pseudorapidity ( η ) for p T values up to 180 GeV and for−2< η <2. The results are consistent with leading order QCD calculations, and a lower limit Λ c >825 GeV (95% CL ) is set on the quark compositeness scale Λ c .
No description provided.
No description provided.
The production of the neutralK− (892) resonances by 200 GeVK− andπ− has been studied over the kinematic range 0.0<xf<1.0 andpt2<5.0 GeV2. Longitudinal and transverse momentum distributions are presented. In addition the decay angular distributions inK− fragmentation to\(\bar K^{0*} \) have been investigated.
No description provided.
No description provided.
No description provided.
We have measured the inclusive cross-section as a function of missing energy, due to the production of neutrinos or new weakly interacting neutral particles in 450 GeV/c proton-nucleus collisions, using calorimetric measurements of visible event energy. Upper limits are placed on the production of new particles as a function of their energy. These upper limits are typically an order
Differential single diffraction cross section.
Differential single diffraction cross section.
Differential single diffraction cross section.
An analysis of high-transverse-momentum electrons using data from the Collider Detector at Fermilab (CDF) of p¯p collisions at s=1800 GeV yields values of the production cross section times branching ratio for W and Z0 bosons of σ(p¯p→WX→eνX)=2.19±0.04(stat)±0.21(syst) nb and σ(p¯p→Z0X→e+e−X)=0.209±0.013(stat)±0.017(syst) nb. Detailed descriptions of the CDF electron identification, background, efficiency, and acceptance are included. Theoretical predictions of the cross sections that include a mass for the top quark larger than the W mass, current values of the W and Z0 masses, and higher-order QCD corrections are in good agreement with these measured values.
No description provided.
An analysis is presented of the rapidity and transverse momentum distributions and of the nuclear stopping power in collisions ofπ+ andK+ mesons with Al and Au nuclei at 250 GeV/c. The experimental results are compared to predictions of the additive quark model and the dual parton model. The AQM offers an overall consistent description of the data in this experiment. The DPM reproduces reasonably well the rapidity spectra in the central and projectile fragmentation regions, but fails to describe the nuclear stopping power.
No description provided.
Excluding protons of PLAB < 1.2 GeV.
No description provided.
Differential cross section data of the CELLO experiment on pair production of muons, taus, and heavy quarks ine+e−-annihilation are presented and analysed, together with our data on Bhabha scattering, in terms of compositeness effects characterized by the mass scale Λ. We discuss difficulties in the combination of limits Λ from different experiments. The appropriate parameter to combine different results turns out to be ɛ=±1/Λ2, which is in contrast to Λ Gaussian distributed.
Errors are combined statistics and systematics.
Errors are combined statistics and systematics.
Errors are combined statistics and systematics.
Charged pions and light nuclei (p, d, t, He3, and He4) have been measured in the interaction of proton beams with C, Nb, and Pb targets at 0.8 and 1.6 GeV incident energies, using a large solid angle detector. From slices on the multiplicity of protonlike particles (free protons and protons bound in light fragments), the events have been sorted out into two classes corresponding to more peripheral and more central collisions. For each class of events, the mean value and the dispersion of the π+ and π− multiplicity distributions have been studied as a function of target mass and incident energy. Comparisons to the Liege intranuclear cascade predictions exhibit some discrepancies which are discussed.
OBSERVATION OF THE PROTONLIKE MULTIPLICITY.
OBSERVATION OF PERCENTAGE OF THE PROTONLIKE MULTIPLICITY REACTIONS.
OBSERVATION OF PERCENTAGE OF THE PROTONLIKE MULTIPLICITY REACTIONS.
The PS185 experiment at the CERN Low Energy Antiproton Ring (LEAR) has studied the reaction p ̄ p → \ ̄ gLΛ at several momenta. In this paper results from two runs with high statistics at 1.546 GeV/ c and 1.695 GeV/ c are described. Based on 4063 and 11362 analysed events, respectively, differential and integrated cross sections, polarizations and spin correlations are presented. The singlet fraction, extracted from the spin correlations, is consistent with zero at both momenta, showing that the \ ̄ gLΛ pairs are produced in a pure triplet state. A comparison of the decay asymmetry parameters of Λ and \ ̄ gL reduces the upper limits for the violation of the CP invariance for this system.
No description provided.
THE BESTFIT WITH LMAX=3, HI2=1.204.
THE BESTFIT WITH LMAX=6, HI2=0.547.
An analysis of global event-shape variables has been carried out for the reaction e + e − →Z 0 →hadrons to measure the strong coupling constant α s . This study is based on 52 720 hadronic events obtained in 1989/90 with the ALEPH detector at the LEP collider at energies near the peak of the Z-resonance. In order to determine α s , second order QCD predictions modified by effects of perturbative higher orders and hadronization were fitted to the experimental distributions of event-shape variables. From a detailed analysis of the theoretical uncertainties we find that this approach is best justified for the differential two-jet rate, from which we obtain α s ( M Z 2 ) = 0.121 ± 0.002(stat.)±0.003(sys.)±0.007(theor.) using a renormalization scale ω = 1 2 M Z . The dependence of α s ( M Z 2 ) on ω is parameterized. For scales m b <ω< M Z the result varies by −0.012 +0.007 .
The second DSYS error is the theoretical error.