None
No description provided.
No description provided.
We present a direct measurement of Ac=2vcac(vc2+ac2) from the left-right forward-backward asymmetry of D*+ and D+ mesons in Z0 events produced with the longitudinally polarized SLAC Linear Collider beam. These Z0→cc¯ events are tagged on the basis of event kinematics and decay topology from a sample of hadronic Z0 decays recorded by the SLAC Large Detector. We measure Ac0=0.73±0.22(stat)±0.10(syst).
No description provided.
We present the first measurement of the correlation between the $Z^0$ spin and the three-jet plane orientation in polarized $Z^0$ decays into three jets in the SLD experiment at SLAC utilizing a longitudinally polarized electron beam. The CP-even and T-odd triple product $\vec{S_Z}\cdot(\vec{k_1}\times \vec{k_2})$ formed from the two fastest jet momenta, $\vec{k_1}$ and $\vec{k_2}$, and the $Z^0$ polarization vector $\vec{S_Z}$, is sensitive to physics beyond the Standard Model. We measure the expectation value of this quantity to be consistent with zero and set 95\% C.L. limits of $-0.022 < \beta < 0.039$ on the correlation between the $Z^0$-spin and the three-jet plane orientation.
Asymmetry extracted from formula: (1/SIG(Q=3JET))*D(SIG)/D(COS(OMEGA)) = 9/16*[(1-1/3*(COS(OMEGA))**2) + ASYM*Az*(1-2*Pmis(ABS(COS(OMEGA))))*COS(OMEGA)], where OMEGA is polar angle of [k1,k2] vector (jet-plane normal), Pmis is the p robability of misassignment of of jet-plane normal, Az is beam polarization. Jets were reconstructed using the 'Durham' jet algorithm with a jet-resol ution parameter Yc = 0.005.
No description provided.
The decay τ−→π−−+vτ has been studied using data collected with the OPAL detector at LEP during 1992 and 1993. The hadronic structure functions for this decay are measured model independently assuming G-parity invariance and neglecting scalar currents. Simultaneously the parity violating asymmetry parameter is determined to be\(\gamma VA = 1.08 _{ - 0.41- 0.25}^{ + 0.46+ 0.14} \), consistent with the Standard Model prediction of γVA=1 for left-handed tau neutrinos. Models of Kühn and Santamaria and of Isgur et al. are used to fit distributions of the invariant 3π mass as well as 2π mass projections of the Dalitz plot. The model dependent mass and width of thea1 resonance are measured to be\(m_{a_1 }= 1.266 \pm 0.014_{ - 0.002}^{ + 0.012} \) GeV and\(\Gamma _{a_1 }= 0.610 \pm 0.049_{ - 0.019}^{ + 0.053} \) GeV for the Kühn and Santamaria model and\(m_{a_1 }= 1.202 \pm 0.009_{ - 0.001}^{ + 0.009} \) GeV and\(\Gamma _{a_1 }= 0.422 \pm 0.023_{ - 0.004}^{ + 0.033} \) GeV for the Isgur et al. model. The model dependent values obtained for the parity violating asymmetry parameter are γVA=0.87±0.27−0.06+0.05 for the Kühn and Santamaria model and γVA=1.10±0.31−0.14+0.13 for the Isgur et al. model. Within the Isgur et al. model the ratio of theS-andD-wave amplitudes is measured to beD/S=−0.09±0.03±0.01.
See paper for definition of four weak decay formfactors : wa, wc, wd, we. For TAU+-.
Here ASYM is parity violating asymmetry parameter gamma_VA = 2g_v*g_A/(g_v **2+g_A**2) (see paper).
We present the first measurement of the left-right asymmetry in Bhabha scattering with a polarized electron beam. The effective electron vector and axial vector couplings to the Z0 are extracted from a combined analysis of the polarized Bhabha scattering data and the left-right asymmetry previously published by this collaboration.
No description provided.
We present a precise measurement of the left-right cross section asymmetry ($A_{LR}$) for $Z$ boson production by $\ee$ collisions. The measurement was performed at a center-of-mass energy of 91.26 GeV with the SLD detector at the SLAC Linear Collider (SLC). The luminosity-weighted average polarization of the SLC electron beam was (63.0$\pm$1.1)%. Using a sample of 49,392 $\z0$ decays, we measure $A_{LR}$ to be 0.1628$\pm$0.0071(stat.)$\pm$0.0028(syst.) which determines the effective weak mixing angle to be $\swein=0.2292\pm0.0009({\rm stat.})\pm0.0004({\rm syst.})$.}
The observed, corrected, asymmetry. L and R refer to the left and right handed beam polarizations.
The left-right asymmetry and effective weak mixing angle corrected to the pole energy value, taking into account photon exchange and electro weak interferences. L and R refer to left and right beam polarizations.
The forward-backward asymmetries of$$e^ + e^ - \to Z^0 \to b\bar b and e^ + e^ - \to Z^0 \to c\bar c$$
Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit, neglecting the effects of B0-BBAR0 mixing.
Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit and correcting for B0-BBAR0 mixing. The second systematic error is due to the uncertainty of the mixing factor.
Measurement of the asymmetry in c-quark production on the Z0 peak using a two parameter fit.
The search for an additional heavy gauge boson Z′ is described. The models considered are based on either a superstring-motivated E 6 or on a left-right symmetry and assume a minimal Higgs sector. Cross sections and asymmetries measured with the L3 detector in the vicinity of the Z resonance during the 1990 and 1991 running periods are used to determine limits on the Z-Z′ gauge boson mixing angle and on the Z′ mass. For Z′ masses above the direct limits, we obtain the following allowed ranges of the mixing angle, θ M at the 95% confidence level: −0.004 ⪕ θ M ⪕ 0.015 for the χ model, −0.003 ⪕ θ M ⪕ 0.020 for the ψ model, −0.029 ⪕ θ M ⪕ 0.010 for the η model, −0.002 ⪕ θ M ⪕ 0.020 for the LR model,
Data taken during 1990.
Data taken during 1991.
Data taken during 1990.
Based on 520 000 fermion pairs accumulated during the first three years of data collection by the ALEPH detector at LEP, updated values of the resonance parameters of theZ are determined to beMZ=(91.187±0.009) GeV, ΓZ=(2.501±0.012) GeV, σhad0=(41.60±0.27) nb, andRℓ=20.78±0.13. The corresponding number of light neutrino species isNν=2.97±0.05. The forward-backward asymmetry in lepton-pair decays is used to determine the ratio of vector to axial-vector couplings of leptons:gV2(MZ2)/gA2(MZ2)=0.0052±0.0016. Combining this with ALEPH measurements of theb andc quark asymmetries and τ polarization gives sin2θWeff=0.2326±0.0013. Assuming the minimal Standard Model, and including measurements ofMW/MZ fromp\(\bar p\) colliders and neutrino-nucleon scattering, the mass of the top quark is\(M_{top} = 156 \pm \begin{array}{*{20}c} {22} \\ {25} \\ \end{array} \pm \begin{array}{*{20}c} {17} \\ {22Higgs} \\ \end{array} \) GeV.
Data from 1990 running period.
Data from 1990 running period.
Data from 1990 running period.