We have measured the cross sections for the Okubo-Zweig-Iizuka-rule-violating reactions π+n→φp and π+p→φΔ++ at 10 GeV/c using the large-aperture-solenoid spectrometer at the Stanford Linear Accelerator Center. We measure the total cross sections for these two reactions to be 179±72 nb for the φp reaction and 172±75 nb for the φΔ++ reaction. Both of these cross sections are consistent with the hypothesis of the φ being produced solely by its nonstrange-quark component as determined from the octet-singlet mixing angle resulting from application of the Gell-Mann—Okubo mass formula to the vector-meson nonet. These data are thus inconsistent with an ideally mixed φ meson.
Axis error includes +- 0.0/0.0 contribution (RES-DEF(RES=DEL(1232P33)++,BACK=CORRECTED)//RES-DEF(RES=PHI,BACK=CORRECTED)//GLAUBER).
We have measured the polarization for elastic scattering in the reaction π−p→π−p at 2.93 and 3.25 GeV/c using a polarized proton target and multiwire proportional chambers (MWPC's) with emphasis on large-angle scattering. Events were selected by fast scintillation-counter logic. Beam trajectories were measured with four MWPC's and the scattered-particle angles were measured with one or two MWPC's; elastic events were determined by coplanarity and angle-angle correlations. The polarization is in agreement with previous measurements below |t|=2.0 (GeV/c)2, and crosses from negative to positive near the secondary dip in the differential cross section dσdt. In the backward region, an energy dependence appears with the polarization being large and negative at 2.93 GeV/c and consistent with zero at 3.25 GeV/c.
No description provided.
No description provided.
Results on kaon, pion, and proton production in muon-proton scattering are presented for 1<Q2<80 GeV2 with an average Bjorken x of 0.033. The measured particle fractions for z>0.2(z=Phadν) are fπ=0.764±0.028, fK=0.187±0.042, and fp=0.049±0.013. The K±π± ratios as a function of z and pT2 are presented: The ratios increase with z, and with pT2 for z<0.3.
No description provided.
We report differential cross sections for h+p→X+p (h=π±,K±,p±) at 100 and 200 GeV/c in the region 0.025<|t|<0.095 (GeV/c)2 and MX2s<0.1.
No description provided.
No description provided.
None
No description provided.
CROSS SECTIONS FOR POSITIVE AND NEGATIVE G-PARITY FINAL STATES (EVEN AND ODD NUMBERS OF PIONS).
No description provided.
A search for narrow resonances in e + e − annihilation between 33.00 and 36.72 GeV is reported. No evidence is found for the existence of such states. The 90% confidence upper limit on the integrated resonance cross section is determined to be 28 nb MeV, a value significantly below that expected for the lowest t t bound state.
AVERAGE R VALUE THROUGHOUT ENERGY RANGE. SYSTEMATIC ERROR IS CONSERVATIVE AND WILL BE IMPROVED.
R VALUES AT 20 MEV STEPS. DATA TAKEN FROM TABLE IN THE PREPRINT.
The energy dependence of the average of the charged multiplicity and its dispersion in π + /K + /p interaction on protons at 147 GeV/ c is found to be the same as in e + e − annihilations if an “effective energy” variable is used instead of the total energy. The effective energy S eff is defined as the invariant mass of all secondaries left after the two leading particles have been removed. Fitting the expression aS eff b to the average charge multiplicity 〈 n ch 〉, we find the power b to be in good agreement with the value of 0.25 predicted by Fermi's statistical model and by Landau's hydrodynamical model.
BINS IN WEFF SELECTED SO AS TO YIELD 200 EVENTS IN EACH BIN.
200 EVENTS IN EACH BIN IN WEFF.
50 EVENTS IN EACH BIN IN WEFF.
Q-meson production is studied in the hypercharge exchange reaction π-p → (Kππ)Λ at 3.95 GeV/c by selecting events witht(π- →Kππ)>1.2GeV2. An enhancement with a mass of 1294±10 MeV and a width of 66±15 MeV is observed in the (Kππ) mass distribution. A spin-parity analysis of the (Kππ) decay Dalitz plot shows the enhancement to be in theJP=1+S(Kϱ) wave and is therefore attributed toQ1-meson production. No evidence is found for the decayQ1→K0ω but limited statistics allow only placing an upper limit of 30% for the decay ratioKω/Kϱ0. TheQ1 production cross section fort(π- →Kππ)>1.2GeV2 is 8±1.3 μb. No evidence is found for the process π-p→Q2Λ withQ2→K*π for which the partial wave analysis gives an upper cross section limit of 2.5 μb at the 95% confidence level.
PRODUCTION OF Q1 OF MASS 1294 +- 10 MEV, WIDTH 66 +- 15 MEV. IN BACKWARD HEMISPHERE, CROSS SECTION IS <0.5 MUB (CL = 95 PCT).
UPPER LIMIT FOR PRODUCTION OF Q2 OF MASS AROUND 1400 MEV.
Results are presented for the quasi two-body hypercharge exchange reactions of the type 0−1/2+→2+1/2+:$$\begin{gathered}
No description provided.
No description provided.
No description provided.
The polarized target asymmetry for γ n→ π − p was measured over the second resonance region from 0.55 to 0.9 GeV at pion c.m. angles between 60° and 120°. A double-arm spectrometer was used with a deuterated butanol target to detect both the pion and the proton, thus considerably improving the data quality. Including the new data in the amplitude analysis, the radiative decay widths of three resonances were determined more accurately than before. The results are compared with various quark models.
PHOTON ENERGY IS IN THE NEUTRON REST FRAME.
PHOTON ENERGY IS IN THE NEUTRON REST FRAME.
PHOTON ENERGY IS IN THE NEUTRON REST FRAME.