Using the solenoidal magnetic detector PLUTO, we have measured the total cross section for e + e − annihilation into hadrons. Results are presented for center of mass energies between 3.6 and 4.8 GeV, and in the regions of the J ψ (3.1) and ψ(3.7) resonances. We also present results for the 2 prong cross section in the energy range 3.6 to 4.8 GeV.
This report reviews the experimental investigation of high energy e + e − interactions by the MARK J collaboration at PETRA, the electron-positron colliding beam accelerator at DESY in Hamburg, Germany. The physics objectives include studies of several purely electromagnetic processes and hadronic final states, which further our knowledge of the nature of the fundamental constituents and of their strong, electromagnetic and weak interactions. Before discussing the physics results, the main features and the principal components of the MARK J detector are discussed in terms of design, function, and performance. Several aspects of the on-line data collection and the off-line analysis are also outlined. Results are presented on tests of quantum electrodynamics using e + e − → e + e − , μ + μ − and τ + τ − , on the measurement of R , the ratio of the hadronic to the point-like muon pair cross section, on the search for new quark flavors, on the discovery of three jet events arising from the radiation of hard noncollinear gluons as predicted by quantum chromodynamics, and on the determination of the strong coupling constant α s .
We have searched for possible narrow resonances produced in e + e − annihilation at Adone, in the mass regions 1910–2545 MeV and 2970–3090 MeV. No evidence has been found for narrow resonances, within the sensitivity of the present work: we deduce an upper limit on the energy integrated resonant cross section of about 10% of the J/ψ(3100) corresponding value.
Using the data sets of 17.3 pb$^{-1}$ collected at $\sqrt{s}=$ 3.773 GeV and 6.5 pb$^{-1}$ collected at $\sqrt{s}=$ 3.650 GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 18 exclusive light hadron final states produced in $e^+e^-$ annihilation at the two energy points.
By analyzing the data sets of 17.3 pb$^{-1}$ taken at $\sqrt{s}=3.773$ GeV and 6.5 pb$^{-1}$ taken at $\sqrt{s}=3.650$ GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 12 exclusive light hadron final states produced in $e^+e^-$ annihilation at the two energy points. We have also set the upper limits on the observed cross sections and the branching fractions for $\psi(3770)$ decay to these final states at 90% C.L.
The pion form factor is measured in the reaction e + e − → π + π − for center of mass energies in the range 480–1100 MeV. Our results are first analysed in terms of the conventional Vector Meson Dominance formalism, and then taking into account the ωπ inelastic channel. The result of this later formalism is a pion form factor ( F π ) which fits quite well all the existing data on F π both in the timelike and spacelike regions, and pion mean square radius of 〈 r π 2 〉 = 0.460 ± 0.011 fm 2 or 〈r π 2 〉 1 2 = 0.678 ± 0.008 fm .
The reaction γγ → 2 π + 2 π − π 0 has been studied using the the ARGUS detector at the e + e − storage ring DORIS II at DESY. The production of the vector-meson pair ωϱ 0 is observed for the first time. The cross section for γγ → ωϱ 0 and the topological cross section for γγ → 2 π + 2 π − π 0 are given. The angular distribution in ωϱ 0 events do not indicate any specific dominant spin-parity; they are consistent with isotropic production and decay of the ω and ϱ 0 mesons over the available W γγ range.
Using the ARGUS detector at the DORIS II e + e − storage ring we have measured direct photons from the decay ???(1 S )→ γgg . The ratio R γ = Γ (???(1S)→ γgg )/ Γ (???(1S)→ ggg )=(3.00±0.13±0.18)% has been determined, from which we deduce values of the strong coupling constant α s =0.225±0.011±0.019 and the QCD scale parameter Λ MS =115±17±28 MeV defined in the modified minimal-subtraction scheme. The shape of the measured spectrum clearly rules out the predictions of the lowest order QCD calculations.
The total cross section for the process of the e + e - annihilation into hadrons has been measured at the centre-of-mass energies of 50 GeV and 52 GeV and a search has been made for new heavy quarks. The ratios R = σ ( e + e - → hadrons )/ σ point ( e + e - → μ + μ - ) obtained are 4.4±0.5 at 50 GeV and 4.7±0.3 at 52 GeV, respectively. An additional systematic uncertainty is 10%. From the event shape analysis we found no evidence for a new quark with charge 2 3 e .
The final state K + K − π + π − has been studied in γγ interactions using the ARGUS detector at the e + e − storage ring DORIS II at DESY. Production of the vector meson pair K ∗0 (892) K ∗0 (892) is observed for the first time. The cross section for K + K − π + π − , K ∗0 K − π + +c.c. and K ∗0 K ∗0 are all found to be of the order of a few nb. In the W γγ range accessible, a mean upper limit of 0.5 nb at 95% CL is derived for φϱ 0 production.