Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ and 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 750 (2015) 64-71, 2015.
Inspire Record 1340691 DOI 10.17182/hepdata.72236

The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity $|y_{ee}|<1$ in minimum-bias Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened $\rho$ spectral function for $M_{ee}<1.1$ GeV/$c^{2}$. The integrated dielectron excess yield at $\sqrt{s_{NN}}$ = 19.6 GeV for $0.4<M_{ee}<0.75$ GeV/$c^2$, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at $\sqrt{s_{NN}}$ = 17.3 GeV. For $\sqrt{s_{NN}}$ = 200 GeV, the normalized excess yield in central collisions is higher than that at $\sqrt{s_{NN}}$ = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV is longer than those in peripheral collisions and at lower energies.

6 data tables

Reconstructed dielectron unlike-sign pairs, like-sign pairs and signal distributions, together with the signal to background ratio (S/B). All columns are presented as a function of dielectron invariant mass in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

Dielectron invariant mass spectrum in the STAR acceptance (|$y_{ee}$| < 1, 0.2 < $p_T^e$ < 3 GeV/c, |$\eta^e$ | < 1) after efficiency correction in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

Hadronic cocktail consisting of the decays of light hadrons and correlated decays of charm in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

More…

Search for anomalous production of prompt same-sign lepton pairs and pair-produced doubly charged Higgs bosons with $\sqrt{s} = 8$ TeV $pp$ collisions using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 03 (2015) 041, 2015.
Inspire Record 1331782 DOI 10.17182/hepdata.66352

A low-background inclusive search for new physics in events with same-sign dileptons is presented. The search uses proton-proton collisions corresponding to 20.3 fb$^{-1}$ of integrated luminosity taken in 2012 at a centre-of-mass energy of 8 TeV with the ATLAS detector at the LHC. Pairs of isolated leptons with the same electric charge and large transverse momenta of the type $e^{\pm}e^{\pm}, e^{\pm}\mu^{\pm}$, and $\mu^{\pm}\mu^{\pm}$ are selected and their invariant mass distribution is examined. No excess of events above the expected level of Standard Model background is found. The results are used to set upper limits on the cross-sections for processes beyond the Standard Model. Limits are placed as a function of the dilepton invariant mass within a fiducial region corresponding to the signal event selection criteria. Exclusion limits are also derived for a specific model of doubly charged Higgs boson production.

4 data tables

Expected and observed numbers of isolated same-sign lepton pairs in the $e^{\pm}e^{\pm}, e^{\pm}\mu^{\pm}$ and $\mu^{\pm}\mu^{\pm}$ channel for various cuts on the dilepton invariant mass, m($\ell^{\pm}\ell^{\pm}$). The uncertainties shown are the systematic uncertainties.

Expected and observed numbers of positively or negatively charged lepton pairs for various cuts on the dilepton invariant mass, $m(\ell \ell)$. The uncertainties shown are the systematic uncertainties.

Upper limit at 95% CL on the fiducial cross section for $\ell^{\pm} \ell^{\pm}$ pairs from non-SM signals. The expected limits and their $1 \sigma$ uncertainties are given together with the observed limits derived from the data. Limits are given separately for the $e^{\pm}e^{\pm}, e^{\pm}\mu^{\pm}$ and $\mu^{\pm}\mu^{\pm}$ channel inclusively and separated by charge.

More…

Measurement of Parity-Violating Asymmetry in Electron-Deuteron Inelastic Scattering

Wang, D. ; Pan, K. ; Subedi, R. ; et al.
Phys.Rev.C 91 (2015) 045506, 2015.
Inspire Record 1327482 DOI 10.17182/hepdata.72848

The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.

5 data tables

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab.

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES I settings.

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES II settings.

More…

Version 2
Measurement of distributions sensitive to the underlying event in inclusive Z-boson production in $pp$ collisions at $\sqrt{s}=7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3195, 2014.
Inspire Record 1315949 DOI 10.17182/hepdata.70547

A measurement of charged-particle distributions sensitive to the properties of the underlying event is presented for an inclusive sample of events containing a Z-boson , decaying to an electron or muon pair. The measurement is based on data collected using the ATLAS detector at the LHC in proton-proton collisions at a centre-of-mass energy of 7 TeV with an integrated luminosity of $4.6$ fb$^{-1}$. Distributions of the charged particle multiplicity and of the charged particle transverse momentum are measured in regions of azimuthal angle defined with respect to the Z-boson direction. The measured distributions are compared to similar distributions measured in jet events, and to the predictions of various Monte Carlo generators implementing different underlying event models.

132 data tables

Towards scalar pT sum density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.

Transverse scalar pT sum density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.

Away scalar pT sum density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.

More…

Search for contact interactions and large extra dimensions in the dilepton channel using proton-proton collisions at $\sqrt{s}$ = 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3134, 2014.
Inspire Record 1305430 DOI 10.17182/hepdata.65760

A search is conducted for non-resonant new phenomena in dielectron and dimuon final states, originating from either contact interactions or large extra spatial dimensions. The LHC 2012 proton-proton collision dataset recorded by the ATLAS detector is used, corresponding to 20 fb$^{-1}$ at $\sqrt{s}$ = 8 TeV. The dilepton invariant mass spectrum is a discriminating variable in both searches, with the contact interaction search additionally utilizing the dilepton forward-backward asymmetry. No significant deviations from the Standard Model expectation are observed. Lower limits are set on the $\ell\ell q q$ contact interaction scale $\Lambda$ between 15.4 TeV and 26.3 TeV, at the 95% credibility level. For large extra spatial dimensions, lower limits are set on the string scale $M_{S}$ between 3.2 TeV to 5.0 TeV.

10 data tables

Reconstructed dielectron mass distributions for data and the SM background estimate.

Reconstructed dimuon mass distributions for data and the SM background estimate.

Reconstructed $\cos\theta^*$ distributions for data and the SM background estimate in the dielectron channel.

More…

Search for supersymmetry in events with large missing transverse momentum, jets, and at least one tau lepton in 20 fb$^{-1}$ of $\sqrt{s}$=8 TeV proton-proton collision data with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 103, 2014.
Inspire Record 1304458 DOI 10.17182/hepdata.65525

A search for supersymmetry (SUSY) in events with large missing transverse momentum, jets, at least one hadronically decaying tau lepton and zero or one additional light leptons (electron/muon), has been performed using 20.3 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 8$ TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed in the various signal regions and 95% confidence level upper limits on the visible cross section for new phenomena are set. The results of the analysis are interpreted in several SUSY scenarios, significantly extending previous limits obtained in the same final states. In the framework of minimal gauge-mediated SUSY breaking models, values of the SUSY breaking scale $\Lambda$ below 63 TeV are excluded, independently of tan$\beta$. Exclusion limits are also derived for an mSUGRA/CMSSM model, in both the R-parity-conserving and R-parity-violating case. A further interpretation is presented in a framework of natural gauge mediation, in which the gluino is assumed to be the only light coloured sparticle and gluino masses below 1090 GeV are excluded.

113 data tables

Distribution of MTtau after all analysis requirements but the requirement on MTtau and the final requirement on HT for the 1tau ''Loose'' SR. The SM prediction includes the data-driven corrections discussed in the paper. MC events are normalized to data in the CRs corresponding to MTtau below 130 GeV. Also shown is the expected signal from typical mSUGRA, GMSB and bRPV samples. The last bin in the expected background distribution is an overflow bin.

Distribution of HT after the MTtau requirement for the 1-tau ''Loose'' SR. The SM prediction includes the data-driven corrections discussed in the paper. MC events are normalized to data in the CRs corresponding to MTtau below 130 GeV. Also shown is the expected signal from typical mSUGRA, GMSB and bRPV samples. The last bin in the expected background distribution is an overflow bin.

Distribution of MTtau after all analysis requirements but the requirement on MTtau and the final requirement on HT for the 1tau 'Tight'' SR. The SM prediction includes the data-driven corrections discussed in the paper. MC events are normalized to data in the CRs corresponding to MTtau below 130 GeV. Also shown is the expected signal from typical mSUGRA, GMSB and bRPV samples. The last bin in the expected background distribution is an overflow bin.

More…

Measurement of the $t\bar{t}$ production cross-section using $e\mu$ events with $b$-tagged jets in $pp$ collisions at $\sqrt{s}=7$ and 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3109, 2014.
Inspire Record 1301856 DOI 10.17182/hepdata.65210

The inclusive top quark pair ($t\bar{t}$) production cross-section $\sigma_{t\bar{t}}$ has been measured in $pp$ collisions at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV with the ATLAS experiment at the LHC, using $t\bar{t}$ events with an opposite-charge $e\mu$ pair in the final state. The measurement was performed with the 2011 7 TeV dataset corresponding to an integrated luminosity of 4.6 fb$^{-1}$ and the 2012 8 TeV dataset of 20.3 fb$^{-1}$. The cross-section was measured to be: $\sigma_{t\bar{t}}=182.9\pm 3.1\pm 4.2\pm 3.6 \pm 3.3$ pb ($\sqrt{s}=7$ TeV) and $\sigma_{t\bar{t}}=242.9\pm 1.7\pm 5.5\pm 5.1\pm 4.2$ pb ($\sqrt{s}=8$ TeV, updated as described in the Addendum), where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the knowledge of the integrated luminosity and of the LHC beam energy. The results are consistent with recent theoretical QCD calculations at next-to-next-to-leading order. Fiducial measurements corresponding to the experimental acceptance of the leptons are also reported, together with the ratio of cross-sections measured at the two centre-of-mass energies. The inclusive cross-section results were used to determine the top quark pole mass via the dependence of the theoretically-predicted cross-section on $m_t^{\rm pole}$, giving a result of $m_t^{\rm pole}=172.9^{+2.5}_{-2.6}$ GeV. By looking for an excess of $t\bar{t}$ production with respect to the QCD prediction, the results were also used to place limits on the pair-production of supersymmetric top squarks $\tilde{t}_1$ with masses close to the top quark mass decaying via $\tilde{t}_1\rightarrow t\tilde{\chi}^0_1$ to predominantly right-handed top quarks and a light neutralino $\tilde{\chi}_0^1$, the lightest supersymmetric particle. Top squarks with masses between the top quark mass and 177 GeV are excluded at the 95% confidence level.

3 data tables

95% CL exclusion limit on signal strength.

95% CL exclusion limit on signal cross section for the 7 TeV dataset.

95% CL exclusion limit on signal cross section for the 8 TeV dataset.


Measurement of the $Z/\gamma^*$ boson transverse momentum distribution in $pp$ collisions at $\sqrt{s}$ = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 145, 2014.
Inspire Record 1300647 DOI 10.17182/hepdata.64354

This paper describes a measurement of the $Z/\gamma^*$ boson transverse momentum spectrum using ATLAS proton-proton collision data at a centre-of-mass energy of $\sqrt{s}$ = 7 TeV at the LHC. The measurement is performed in the $Z/\gamma^* \rightarrow e^+e^-$ and $Z/\gamma^* \rightarrow \mu^+\mu^-$ channels, using data corresponding to an integrated luminosity of 4.7 fb$^{-1}$. Normalized differential cross sections as a function of the $Z/\gamma^*$ boson transverse momentum are measured for transverse momenta up to 800 GeV. The measurement is performed inclusively for $Z/\gamma^*$ rapidities up to 2.4, as well as in three rapidity bins. The channel results are combined, compared to perturbative and resummed QCD calculations and used to constrain the parton shower parameters of Monte Carlo generators.

3 data tables

The measured normalized cross section (1/SIG(FID))*D(SIG(FID))/DPT(Z) at the Born level in bins of PT(Z) for the Z/GAMMA* --> E+ E- and Z/GAMMA* --> MU+ MU- channels, and correction factors to the bare- and dressed-level cross sections. The relative statistical and total uncorrelated systematic uncertainties are given for each channel as well as the correlated systematic uncertainties.

The measured normalized combined (electron and muon channels) cross section (1/SIG(FID))*D(SIG(FID))/DPT(Z) inclusive in rapidity. The cross sections at Born and dressed levels are given as well as the relative statistical and total uncorrelated systematic uncertainties as well as the correlated systematic uncertainties.

The measured normalized combined (electron and muon channels) cross section (1/SIG(FID))*D(SIG(FID))/DPT(Z) for 0 <= ABS(YRAP(Z)) < 1, 1 <= ABS(YRAP(Z)) < 2 and 2 <= ABS(YRAP(Z)) < 2.4. The cross sections at Born and dressed levels are given as well as the relative statistical and systematic uncertainties for uncorrelated and correlated sources.


Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using $\sqrt{s}=8$ TeV proton--proton collision data

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 176, 2014.
Inspire Record 1298722 DOI 10.17182/hepdata.64973

A search for squarks and gluinos in final states containing high-$p_{\rm T}$ jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in $\sqrt{s}=8$ TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of $20.3 \mathrm{fb}^{-1}$. No significant excess above the Standard Model expectation is observed. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with $\tan\beta=30$, $A_0=-2m_0$ and $\mu> 0$, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector.

195 data tables

The effective mass distribution in 2-jet loose signal region.

The effective mass distribution in 2-jet medium and tight signal regions.

The effective mass distribution in 2-jet (W) signal region.

More…

Measurement of the low-mass Drell-Yan differential cross section at sqrt(s)=7 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 06 (2014) 112, 2014.
Inspire Record 1288706 DOI 10.17182/hepdata.64183

The differential cross section for the process $Z/\gamma^*\rightarrow ll$ ($l=e,\mu$) as a function of dilepton invariant mass is measured in pp collisions at $\sqrt{s}=$ 7 TeV at the LHC using the ATLAS detector. The measurement is performed in the $e$ and $\mu$ channels for invariant masses between 26 GeV and 66 GeV using an integrated luminosity of 1.6 fb$^{-1}$ collected in 2011 and these measurements are combined. The analysis is extended to invariant masses as low as 12 GeV in the muon channel using 35 pb$^{-1}$ of data collected in 2010. The cross sections are determined within fiducial acceptance regions and corrections to extrapolate the measurements to the full kinematic range are provided. Next-to-next-to-leading-order QCD predictions provide a significantly better description of the results than next-to-leading-order QCD calculations, unless the latter are matched to a parton shower calculation.

13 data tables

The nominal electron-channel differential Born-level fiducial cross section. The statistical and systematic uncertainties are given for each invariant mass bin. The luminosity uncertainty 1.8% is not included.

The systematic uncertainties of the nominal electron-channel cross-section measurement. Some sources of uncertainty have both correlated and uncorrelated components. Correlated uncertainties arise from the uncertainty in the electroweak background contributions delta(e.w.)_cor, from corrections to the Monte Carlo modelling of the Z/gamma* pT spectra, delta(pTrw)_cor, the electron identification efficiency, delta(id)_cor1 and delta(id)_cor2, the reconstruction efficiency, delta(rec)_cor, and from the Geant4 simulation, delta(geant4)_cor. Uncorrelated uncertainties arise from the isolation and trigger efficiency corrections, delta(trig) and delta(iso) respectively, unfolding uncertainties, delta(res)_unf, and the statistical precision of the signal Monte Carlo, delta(MC). The electron identification efficiency uncertainties have several components other than the two largest correlated parts above. These additional components are all combined into a single uncorrelated error source delta(id)_unc. The uncertainty on the normalisation of the multijet background is given by delta(multijet). The luminosity uncertainty 1.8% is not included.

The nominal muon-channel differential Born-level fiducial cross section. The statistical, systematic, and total uncertainties are given for each invariant mass bin. The luminosity uncertainty 1.8% is not included.

More…