Measurement of charged particle multiplicity distributions in DIS at HERA and its implication to entanglement entropy of partons

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Baty, A. ; et al.
Eur.Phys.J.C 81 (2021) 212, 2021.
Inspire Record 1827840 DOI 10.17182/hepdata.102570

Charged particle multiplicity distributions in positron-proton deep inelastic scattering at a centre-of-mass energy $\sqrt{s}=319$ GeV are measured. The data are collected with the H1 detector at HERA corresponding to an integrated luminosity of $136$ pb${}^{-1}$. Charged particle multiplicities are measured as a function of photon virtuality $Q^2$, inelasticity $y$ and pseudorapidity $\eta$ in the laboratory and the hadronic centre-of-mass frames. Predictions from different Monte Carlo models are compared to the data. The first and second moments of the multiplicity distributions are determined and the KNO scaling behaviour is investigated. The multiplicity distributions as a function of $Q^2$ and the Bjorken variable $x_{\rm Bj}$ are converted to the hadron entropy $S_{\rm hadron}$, and predictions from a quantum entanglement model are tested.

10 data tables

Charged particle multiplicity distribution $P(N)$ measured as a function of the number of charged particles $N$ in 4x4 kinematic bins of $Q^2$ and $y$.

Charged particle multiplicity distribution $P(N)$ measured as a function of the number of charged particles $N$ in three overlapping pseudorapidity ranges $-1.2<\eta_{lab}\vert<0.2$, $-0.5<\eta_{lab}\vert<0.9$ and $0.2<\eta_{lab}\vert<1.6$, subdivided into 4x4 kinematic bins of $Q^2$ and $y$.

Charged particle multiplicity distribution $P(N)$ measured as a function of the number of charged particles $N$ with the additional restriction to select only particles from the current region of the Breit frame $0<\eta^{*}<4$, in 4x4 kinematic bins of $Q^2$ and $y$.

More…

Differential Cross-Sections for the pi0 Photoproduction at Theta (CM) = 90-Degrees and K (Lab) = 380-MeV-820-MeV

Jung, M. ; Kattein, J. ; Leu, P. ; et al.
BONN-HE-76-15, 1976.
Inspire Record 111677 DOI 10.17182/hepdata.50235

None

1 data table

No description provided.


Measurement of Jet Production Cross Sections in Deep-inelastic $ep$ Scattering at HERA

The H1 collaboration Collaboration, H1 ; Andreev, Vladimir ; Baghdasaryan, Artem ; et al.
Eur.Phys.J.C 77 (2017) 215, 2017.
Inspire Record 1496981 DOI 10.17182/hepdata.86390

A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities $5.5<Q^2<80\,{\rm GeV}^2$ and inelasticities $0.2<y<0.6$ is presented, using data taken with the H1 detector at HERA, corresponding to an integrated luminosity of $290\,{\rm pb}^{-1}$. Double-differential inclusive jet, dijet and trijet cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of $Q^2$. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective $Q^2$-interval are also determined. Previous results of inclusive jet cross sections in the range $150<Q^2<15\,000\,{\rm GeV}^2$ are extended to low transverse jet momenta $5<P_{T}^{\rm jet}<7\,{\rm GeV}$. The data are compared to predictions from perturbative QCD in next-to-leading order in the strong coupling, in approximate next-to-next-to-leading order and in full next-to-next-to-leading order. Using also the recently published H1 jet data at high values of $Q^2$, the strong coupling constant $\alpha_s(M_Z)$ is determined in next-to-leading order.

55 data tables

Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 5.5-8.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.

Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 8.0-11.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.

Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 11.0-16.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.

More…

Measurement of Inclusive ep Cross Sections at High Q2 at sqrt(s) = 225 and 252 GeV and of the Longitudinal Proton Structure Function FL at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Baghdasaryan, S. ; et al.
Eur.Phys.J.C 74 (2014) 2814, 2014.
Inspire Record 1269731 DOI 10.17182/hepdata.62536

Inclusive ep double differential cross sections for neutral current deep inelastic scattering are measured with the H1 detector at HERA. The data were taken with a lepton beam energy of 27.6 GeV and two proton beam energies of Ep = 460 and 575 GeV corresponding to centre-of-mass energies of 225 and 252 GeV, respectively. The measurements cover the region of 6.5 *10^{-4}<=x<= 0.65 for 35<=Q^2<=800 GeV^2 up to y = 0.85. The measurements are used together with previously published H1 data at Ep = 920 GeV and lower Q2 data at Ep = 460, 575 and 920 GeV to extract the longitudinal proton structure function FL in the region 1.5<=Q^2 <=800 GeV^2.

51 data tables

The neutral current reduced cross section at Q^2=35 GeV^2 for a proton energy of 460 GeV.

The neutral current reduced cross section at Q^2=45 GeV^2 for a proton energy of 460 GeV.

The neutral current reduced cross section at Q^2=60 GeV^2 for a proton energy of 460 GeV.

More…

Inelastic Production of J/psi Mesons in Photoproduction and Deep Inelastic Scattering at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Eur.Phys.J.C 68 (2010) 401-420, 2010.
Inspire Record 844299 DOI 10.17182/hepdata.60488

A measurement is presented of inelastic photo- and electroproduction of J/psi mesons in ep scattering at HERA. The data were recorded with the H1 detector in the period from 2004 to 2007. Single and double differential cross sections are determined and the helicity distributions of the J/psi mesons are analysed. The results are compared to theoretical predictions in the colour singlet model and in the framework of non-relativistic QCD. Calculations in the colour singlet model using a k_T factorisation ansatz are able to give a good description of the data, while colour singlet model calculations to next-to-leading order in collinear factorisation underestimate the data.

19 data tables

Measured differential photoproduction cross section as a function of the squared transverse momentum of the J/PSI.

Measured differential photoproduction cross section as a function of the elasticity of the J/PSI.

Measured photoproduction cross section as a function of the photon-proton centre of mass energy W.

More…

Elastic and Proton-Dissociative Photoproduction of J/psi Mesons at HERA

The H1 collaboration Alexa, C. ; Andreev, V. ; Baghdasaryan, A. ; et al.
Eur.Phys.J.C 73 (2013) 2466, 2013.
Inspire Record 1228913 DOI 10.17182/hepdata.66507

Cross sections for elastic and proton-dissociative photoproduction of J/psi mesons are measured with the H1 detector in positron-proton collisions at HERA. The data were collected at $ep$ centre-of-mass energies sqrt{s} approx 318 GeV and sqrt{s} approx 225 GeV, corresponding to integrated luminosities of L = 130 pb^{-1} and L = 10.8 pb^{-1}, respectively. The cross sections are measured as a function of the photon-proton centre-of-mass energy in the range 25< Wgp < 110 GeV. Differential cross sections $\mathrm{d}\sigma / \mathrm{d}t$, where $t$ is the squared four-momentum transfer at the proton vertex, are measured in the range $|t| < 1.2 \, \gevsq$ for the elastic process and $|t| < 8 \, \gevsq$ for proton dissociation. The results are compared to other measurements. The $\Wgp$ and $t$-dependences are parametrised using phenomenological fits.

8 data tables

The elastic photoproduction cross section derived from the high-energy data set as a function of the photon-proton centre-of-mass energy W. PHI_T is the transeverse polarised photon flux.

The proton-dissociative photoproduction cross section derived from the high-energy data set as a function of the photon-proton centre-of-mass energy W. PHI_T is the transeverse polarised photon flux.

The elastic photoproduction cross section derived from the low-energy data set as a function of the photon-proton centre-of-mass energy W. PHI_T is the transeverse polarised photon flux.

More…

Measurement of Feynman-$x$ Spectra of Photons and Neutrons in the Very Forward Direction in Deep-Inelastic Scattering at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
Eur.Phys.J.C 74 (2014) 2915, 2014.
Inspire Record 1288065 DOI 10.17182/hepdata.64481

Measurements of normalised cross sections for the production of photons and neutrons at very small angles with respect to the proton beam direction in deep-inelastic $ep$ scattering at HERA are presented as a function of the Feynman variable $x_F$ and of the centre-of-mass energy of the virtual photon-proton system $W$. The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of $131 \mathrm{pb}^{-1}$. The measurement is restricted to photons and neutrons in the pseudorapidity range $\eta>7.9$ and covers the range of negative four momentum transfer squared at the positron vertex $6<Q^2<100$ GeV$^2$, of inelasticity $0.05<y<0.6$ and of $70<W<245 $GeV. To test the Feynman scaling hypothesis the $W$ dependence of the $x_F$ dependent cross sections is investigated. Predictions of deep-inelastic scattering models and of models for hadronic interactions of high energy cosmic rays are compared to the measured cross sections.

4 data tables

The fraction of DIS events with forward photons. For each measurement, the statistical, the uncorrelated systematic uncertainties and the bin-to-bin correlated systematic uncertainties due to the FNC absolute energy scale (EFNC), the measurement of the particle impact position in the FNC (XYFNC) and the model dependence of the data correction (model) are given.

The fraction of DIS events with forward neutrons. For each measurement, the statistical, the uncorrelated systematic uncertainties and the bin-to-bin correlated systematic uncertainties due to the FNC absolute energy scale (EFNC), the measurement of the particle impact position in the FNC (XYFNC) and the model dependence of the data correction (model) are given.

Normalised cross sections of forward photon production in DIS as a function of XF. For each measurement, the statistical, the uncorrelated systematic uncertainties and the bin-to-bin correlated systematic uncertainties due to the FNC absolute energy scale (EFNC), the measurement of the particle impact position in the FNC (XYFNC) and the model dependence of the data correction (model) are given.

More…

Measurement of Charged Particle Spectra in Deep-Inelastic ep Scattering at HERA

The H1 collaboration Alexa, C. ; Andreev, V. ; Baghdasaryan, A. ; et al.
Eur.Phys.J.C 73 (2013) 2406, 2013.
Inspire Record 1217865 DOI 10.17182/hepdata.62615

Charged particle production in deep-inelastic ep scattering is measured with the H1 detector at HERA. The kinematic range of the analysis covers low photon virtualities, 5<Q (2)<100 GeV(2), and small values of Bjorken-x, 10(−4)<x<10(−2). The analysis is performed in the hadronic centre-of-mass system. The charged particle densities are measured as a function of pseudorapidity (η (∗)) and transverse momentum ( ) in the range 0<η (∗)<5 and in bins of x and Q (2). The data are compared to predictions from different Monte Carlo generators implementing various options for hadronisation and parton evolutions.

36 data tables

Charged particle density as a function of pseudorapidity for the PT range 0-1 GeV in the HCM frame.

Charged particle density as a function of pseudorapidity for the PT range 1-10 GeV in the HCM frame.

Charged particle density as a function of pseudorapidity for the PT interval 0-1 GeV in fixed Q**2 and X intervals in the HCM frame.

More…

Measurement of Dijet Production in Diffractive Deep-Inelastic ep Scattering at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
JHEP 03 (2015) 092, 2015.
Inspire Record 1332186 DOI 10.17182/hepdata.73124

A measurement is presented of single- and double-differential dijet cross sections in diffractive deep-inelastic $ep$ scattering at HERA using data collected by the H1 experiment corresponding to an integrated luminosity of 290 pb^{-1}. The investigated phase space is spanned by the photon virtuality in the range of 4<Q^{2}<100 GeV^{2} and by the fractional proton longitudinal momentum loss x_pom<0.03. The resulting cross sections are compared with next-to-leading order QCD predictions based on diffractive parton distribution functions and the value of the strong coupling constant is extracted.

11 data tables

Integrated cross section in the measurement phase space.

Diffractive DIS dijet cross section measured differentially as a function of $Q^2$. The global normalisation uncertainty of $7.8\%$ is not listed explicitly but is included in the total systematic uncertainty. The last two columns show the correction factors for hadronisation and QED radiation, respectively.

Diffractive DIS dijet cross section measured differentially as a function of $y$. The global normalisation uncertainty of $7.8\%$ is not listed explicitly but is included in the total systematic uncertainty. The last two column show the correction factors for hadronisation and QED radiation, respectively.

More…

Diffractive Dijet Production with a Leading Proton in $ep$ Collisions at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
JHEP 05 (2015) 056, 2015.
Inspire Record 1343110 DOI 10.17182/hepdata.73234

The cross section of the diffractive process e^+p -> e^+Xp is measured at a centre-of-mass energy of 318 GeV, where the system X contains at least two jets and the leading final state proton p is detected in the H1 Very Forward Proton Spectrometer. The measurement is performed in photoproduction with photon virtualities Q^2 <2 GeV^2 and in deep-inelastic scattering with 4 GeV^2<Q^2<80 GeV^2. The results are compared to next-to-leading order QCD calculations based on diffractive parton distribution functions as extracted from measurements of inclusive cross sections in diffractive deep-inelastic scattering.

23 data tables

Integrated $e^{+}p$ diffractive dijet cross sections in $\gamma p$. The hadronisation correction factor ($1+\delta_{\text{hadr}}$) applied to the NLO calculation is also listed. The overall normalisation uncertainty of $6\%$ is not included in the table.

Integrated $e^{+}p$ diffractive dijet cross sections in DIS. The hadronisation correction factor ($1+\delta_{\text{hadr}}$) applied to the NLO calculation and the radiative correction ($1+\delta_{\text{rad}}$) are also listed. The overall normalisation uncertainty of $6\%$ is not included in the table.

Ratio of integrated $e^{+}p$ diffractive dijet cross sections for $Q^2<2\,\text{GeV}^2$ (photoproduction) to $Q^2>4\,\text{GeV}^2$ (DIS).

More…