Inclusive cross sections, charge ratio and double-helicity asymmetries for $\pi^+$ and $\pi^-$ production in $p$$+$$p$ collisions at $\sqrt{s}$=200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 91 (2015) 032001, 2015.
Inspire Record 1315330 DOI 10.17182/hepdata.71403

We present the midrapidity charged pion invariant cross sections and the ratio of $\pi^-$-to-$\pi^+$ production ($5<p_T<13$ GeV/$c$), together with the double-helicity asymmetries ($5<p_T<12$ GeV/$c$) in polarized $p$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. The cross section measurements are consistent with perturbative calculations in quantum chromodynamics within large uncertainties in the calculation due to the choice of factorization, renormalization, and fragmentation scales. However, the theoretical calculation of the ratio of $\pi^-$-to-$\pi^+$ production when considering these scale uncertainties overestimates the measured value, suggesting further investigation of the uncertainties on the charge-separated pion fragmentation functions is needed. Due to cancellations of uncertainties in the charge ratio, direct inclusion of these ratio data in future parameterizations should improve constraints on the flavor dependence of quark fragmentation functions to pions. By measuring charge-separated pion asymmetries, one can gain sensitivity to the sign of $\Delta G$ through the opposite sign of the up and down quark helicity distributions in conjunction with preferential fragmentation of positive pions from up quarks and negative pions from down quarks. The double-helicity asymmetries presented are sensitive to the gluon helicity distribution over an $x$ range of $\sim$0.03--0.16.

3 data tables

Invariant cross section for $\pi^+$ and $\pi^-$ hadrons, as well as the statistical and systematic uncertainties. In addition, there is an absolute scale uncertainty of 9.6$\%$.

Double-helicity asymmetries and statistical uncertainties for $\pi^+$ and $\pi^-$ hadrons. The primary systematic uncertainties, which are fully correlated between points, are $1.4\times10^{-3}$ from relative luminosity and a $^{+7.0\%}_{-7.7\%}$ scaling uncertainty from beam polarization.

Ratio of charged pion cross section, as shown in Fig.6.


Cross sections for the reactions $e^+ e^-\to K_S^0 K_L^0$, $K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ from events with initial-state radiation

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 89 (2014) 092002, 2014.
Inspire Record 1287920 DOI 10.17182/hepdata.64506

We study the processes $e^+ e^-\to K_S^0 K_L^0 \gamma$, $K_S^0 K_L^0 \pi^+\pi^-\gamma$, $K_S^0 K_S^0 \pi^+\pi^-\gamma$, and $K_S^0 K_S^0 K^+K^-\gamma$, where the photon is radiated from the initial state, providing cross section measurements for the hadronic states over a continuum of center-of-mass energies. The results are based on 469 fb$^{-1}$ of data collected with the BaBar detector at SLAC. We observe the $\phi(1020)$ resonance in the $K_S^0 K_L^0$ final state and measure the product of its electronic width and branching fraction with about 3% uncertainty. We present a measurement of the $e^+ e^-\to K_S^0 K_L^0 $ cross section in the energy range from 1.06 to 2.2 GeV and observe the production of a resonance at 1.67 GeV. We present the first measurements of the $e^+ e^-\to K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ cross sections, and study the intermediate resonance structures. We obtain the first observations of \jpsi decay to the $K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ final states.

22 data tables

Cross section measurement for PHI(1020).

Mass measurement for PHI(1020).

Measurement of the PHI(1020) width.

More…

Antideuteron production in $\Upsilon(nS)$ decays and in $e^+e^- \to q\overline{q}$ at $\sqrt{s} \approx 10.58 \mathrm{\,Ge\kern -0.1em V}$

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 89 (2014) 111102, 2014.
Inspire Record 1286317 DOI 10.17182/hepdata.64605

We present measurements of the inclusive production of antideuterons in $e^+e^-$ annihilation into hadrons at $\approx 10.58 \mathrm{\,Ge\kern -0.1em V}$ center-of-mass energy and in $\Upsilon(1S,2S,3S)$ decays. The results are obtained using data collected by the BABAR detector at the PEP-II electron-positron collider. Assuming a fireball spectral shape for the emitted antideuteron momentum, we find $\mathcal{B}(\Upsilon(1S) \to \bar{d}X) = (2.81 \pm 0.49 \mathrm{(stat)} {}^{+0.20}_{-0.24} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(2S) \to \bar{d}X) = (2.64 \pm 0.11 \mathrm{(stat)} {}^{+0.26}_{-0.21} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(3S) \to \bar{d}X) = (2.33 \pm 0.15 \mathrm{(stat)} {}^{+0.31}_{-0.28} \mathrm{(syst)})/! \times /! 10^{-5}$, and $\sigma (e^+e^- \to \bar{d}X) = (9.63 \pm 0.41 \mathrm{(stat)} {}^{+1.17}_{-1.01} \mathrm{(syst)}) \mbox{\,fb}$.

5 data tables

The rate of antideuteron production from the decay of UPSILON(3S).

The rate of antideuteron production from the decay of UPSILON(2S).

The rate of antideuteron production from the decay of UPSILON(1S).

More…

Study of e+e- --> p anti-p via initial-state radiation at BABAR

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 87 (2013) 092005, 2013.
Inspire Record 1217421 DOI 10.17182/hepdata.62678

The process e+e- --> p anti-p gamma is studied using 469 fb-1 of integrated luminosity collected with the BABAR detector at the PEP-II collider, at an e+e- center-of-mass energy of 10.6 GeV. From the analysis of the p anti-p invariant mass spectrum, the energy dependence of the cross section for e+e- --> p anti-p is measured from threshold to 4.5 GeV. The energy dependence of the ratio of electric and magnetic form factors, |G_E/G_M|, and the asymmetry in the proton angular distribution are measured for p anti-p masses below 3 GeV. We also measure the branching fractions for the decays J/psi --> p anti-p and psi(2S) --> p anti p.

1 data table

Measurement of the cross section as a function of the invariant mass of the PBAR-P system and the effective form factor for the reaction E+ E- --> PBAR P. The contributions from J/PSI and PSI(25) decaying to PBAR-P have been subtracted. The form factor error is the combined statistical and systematic.


Proton-proton collisions at 3.5 GeV

Piserchio, R.J. ; Kalbach, R.M. ;
Nuovo Cim. 26 (1962) 729-739, 1962.
Inspire Record 1185010 DOI 10.17182/hepdata.37708

Ilford G-5 emulsions were exposed to an external, 3.5 GeY proton beam of the Berkeley Bevatron. A total of 1200 nuclear interactions of beam protons was located, of which 128 were identified as protonproton collisions. Multiple scattering, blob density, range and angle measurements were employed to determine the cross-sections for elastic and inelastic interactions as well as the identities and center-of-mass system momenta and scattering angles of secondaries from inelastic proton-proton interactions. This analysis indicates a cross-section of (8.0±2.4) mb for elastic events, (24.1±2.9) mb for two-prong inelasitc events, (7.9±1.4)mb for four-prong events and (0.6±0.3) mb for sixprong events. The mean charged pion multiplicity in inelastic interactions is 1.5±0.2 and corresponds to an average degree of inelasticity of 0.45 ±0.06. Center-of-mass system angular distributions of charged secondaries from inelastic events display a peaking for small scattering angles which is most pronounced for protons and pions from events with low secondary multiplicity. Momentum and transverse momentum distributions of secondary protons and pions from inelastic events are presented and compared with the results at other energies. The angular distribution of elastically scattered protons is found to be in fair agreement with that predicted by a uniform optical model of radius 1.25-10-13 cm and opacity 0.66.

1 data table

No description provided.


Proton-proton collisions at 19.8 GeV/c

Abraham, F.F. ; Kalbach, R.M. ;
Nuovo Cim. 26 (1962) 717-728, 1962.
Inspire Record 1185008 DOI 10.17182/hepdata.37715

Elastic and inelastic 19.8 GeV/c proton-proton collisions in nuclear emulsion are examined using an external proton beam of the CERN Proton Synchrotron. Multiple scattering, blob density, range and angle measurements give the momentum spectra and angular distributions of secondary protons and pions. The partial cross-sections corresponding to inelastic interactions having two, four, six, eight, ten and twelve charged secondaries are found to be, respectively, (16.3±8.4) mb, (11.5 ± 6.0) mb, (4.3 ± 2.5) mb, (1.9 ± 1.3) mb, (0.5 ± 0.5) mb and (0.5±0.5)mb. The elastic cross-section is estimated to be (4.3±2.5) mb. The mean charged meson multiplicity for inelastic events is 3.7±0.5 and the average degree of inelasticity is 0.35±0.09. Strong forward and backward peaking is observed in the center-of-mass system for both secondary charged pions and protons. Distributions of energy, momentum and transverse momentum for identified charged secondaries are presented and compared with the results of work at other energies and with the results of a statistical theory of proton-proton collisions.

1 data table

No description provided.


Initial-State Radiation Measurement of the e+e- -> pi+pi-pi+pi- Cross Section

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 85 (2012) 112009, 2012.
Inspire Record 1086164 DOI 10.17182/hepdata.57561

We study the process e+e- -> pi+pi-pi+pi-gamma, with a photon emitted from the initial-state electron or positron, using 454.3 fb^-1 of data collected with the BABAR detector at SLAC, corresponding to approximately 260,000 signal events. We use these data to extract the non-radiative sigma(e+e- ->pi+pi-pi+pi-) cross section in the energy range from 0.6 to 4.5 Gev. The total uncertainty of the cross section measurement in the peak region is less than 3%, higher in precision than the corresponding results obtained from energy scan data.

1 data table

The dressed and undressed cross sections for the reaction E+ E- --> PI+ PI- PI+ PI-. Statistical errors only.


Cross Sections for the Reactions e+e- --> K+ K- pi+pi-, K+ K- pi0pi0, and K+ K- K+ K- Measured Using Initial-State Radiation Events

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Prencipe, E. ; et al.
Phys.Rev.D 86 (2012) 012008, 2012.
Inspire Record 892684 DOI 10.17182/hepdata.62222

We study the processes e+e- --> K+ K- pi+pi-gamma, K+ K- pi0pi0gamma, and K+ K- K+ K-gamma, where the photon is radiated from the initial state. About 84000, 8000, and 4200 fully reconstructed events, respectively, are selected from 454 fb-1 of BaBar data. The invariant mass of the hadronic final state defines the \epem center-of-mass energy, so that the K+ K- pi+pi- data can be compared with direct measurements of the e+e- --> K+ K- pi+pi- reaction. No direct measurements exist for the e+e- --> K+ K-pi0pi0 or e+e- --> K+ K-K+ K- reactions, and we present an update of our previous result with doubled statistics. Studying the structure of these events, we find contributions from a number of intermediate states, and extract their cross sections. In particular, we perform a more detailed study of the e+e- --> phi(1020)pipigamma reaction, and confirm the presence of the Y(2175) resonance in the phi(1020) f0(980) and K+K-f0(980) modes. In the charmonium region, we observe the J/psi in all three final states and in several intermediate states, as well as the psi(2S) in some modes, and measure the corresponding product of branching fraction and electron width.

8 data tables

The cross section for the reaction E+ E- --> K+ K- PI+ PI- measured with ISR data. Statistical errors only.

Cross section measurements for the reaction E+ E- --> K*(892)0 K- PI+. Statistical errors only.

Cross section measurements for the reaction E+ E- --> PHI PI+ PI-. Statistical errors only.

More…

Measurement of the W -> lnu and Z/gamma* -> ll production cross sections in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
JHEP 12 (2010) 060, 2010.
Inspire Record 872570 DOI 10.17182/hepdata.56744

First measurements of the W -> lnu and Z/gamma* -> ll (l = e, mu) production cross sections in proton-proton collisions at sqrt(s) = 7 TeV are presented using data recorded by the ATLAS experiment at the LHC. The results are based on 2250 W -> lnu and 179 Z/gamma* -> ll candidate events selected from a data set corresponding to an integrated luminosity of approximately 320 nb-1. The measured total W and Z/gamma*-boson production cross sections times the respective leptonic branching ratios for the combined electron and muon channels are $\stotW$ * BR(W -> lnu) = 9.96 +- 0.23(stat) +- 0.50(syst) +- 1.10(lumi) nb and $\stotZg$ * BR(Z/gamma* -> ll) = 0.82 +- 0.06(stat) +- 0.05(syst) +- 0.09(lumi) nb (within the invariant mass window 66 < m_ll < 116 GeV). The W/Z cross-section ratio is measured to be 11.7 +- 0.9(stat) +- 0.4(syst). In addition, measurements of the W+ and W- production cross sections and of the lepton charge asymmetry are reported. Theoretical predictions based on NNLO QCD calculations are found to agree with the measurements.

35 data tables

Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.

Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nubar final state.

Measured fiducial cross section times leptonic branching ratio for W+/- production in the combined W+ -> e+ nu and W- -> e- nubar final state.

More…

Search for New Particles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Rev.Lett. 105 (2010) 161801, 2010.
Inspire Record 865423 DOI 10.17182/hepdata.57036

A search for new heavy particles manifested as resonances in two-jet final states is presented. The data were produced in 7 TeV proton-proton collisions by the Large Hadron Collider (LHC) and correspond to an integrated luminosity of 315 nb^-1 collected by the ATLAS detector. No resonances were observed. Upper limits were set on the product of cross section and signal acceptance for excited-quark (q*) production as a function of q* mass. These exclude at the 95% CL the q* mass interval 0.30 < mq* < 1.26 TeV, extending the reach of previous experiments.

2 data tables

The dijet mass distribution (NUMBER OF EVENTS).

95 PCT CL upper limit of the cross section x acceptance.