Search for Resonant Production of Dark Quarks in the Dijet Final State with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 02 (2024) 128, 2024.
Inspire Record 2719976 DOI 10.17182/hepdata.145191

This paper presents a search for a new $Z^\prime$ resonance decaying into a pair of dark quarks which hadronise into dark hadrons before promptly decaying back as Standard Model particles. This analysis is based on proton-proton collision data recorded at $\sqrt{s}=13$ TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb$^{-1}$. After selecting events containing large-radius jets with high track multiplicity, the invariant mass distribution of the two highest-transverse-momentum jets is scanned to look for an excess above a data-driven estimate of the Standard Model multijet background. No significant excess of events is observed and the results are thus used to set 95 % confidence-level upper limits on the production cross-section times branching ratio of the $Z^\prime$ to dark quarks as a function of the $Z^\prime$ mass for various dark-quark scenarios.

13 data tables

Distribution of the di-jet invariant mass, $m_{\mathrm{JJ}}$ for the data, the simulated multi-jet background and of some representative signals (models A, B, C and D with $m_{Z'}=2.5$ TeV), shown after applying the preselections described in the text. The simulated background is normalised to the data and the signals are normalised to a production cross-section of 10 fb.

Distributions of the number of tracks associated to the leading jet, $n_{track,1}$, for the data, the simulated multi-jet background and of some representative signals (models A, B, C and D with $m_{Z^\prime}=2.5$ TeV), shown after applying the preselections described in the text. All distributions are normalised to unity. The uncertainty band around the background prediction corresponds to the modelling uncertainty described in Section 6.

Distributions of the number of tracks associated to the subleading jet, $n_{track,2}$, for the data, the simulated multi-jet background and of some representative signals (models A, B, C and D with $m_{Z^\prime}=2.5$ TeV), shown after applying the preselections described in the text. All distributions are normalised to unity. The uncertainty band around the background prediction corresponds to the modelling uncertainty described in Section 6.

More…

Search for boosted diphoton resonances in the 10 to 70 GeV mass range using 138 fb$^{-1}$ of 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 155, 2023.
Inspire Record 2178061 DOI 10.17182/hepdata.131600

A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on $pp$ collision data corresponding to an integrated luminosity of 138 fb$^{-1}$ at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV.

7 data tables

The expected and observed upper limits at 95\% CL on the fiducial cross-section times branching ratio to two photons of a narrow-width ($\Gamma_{X}$ = 4 MeV) scalar resonance as a function of its mass $m_{X}$.

Diphoton invariant mass in the signal region using a 0.1 GeV binning.

Parametrization of the $C_{X}$ factor, defined as the ratio between the number of reconstructed signal events passing the analysis cuts and the number of signal events at the particle level generated within the fiducial volume, as function of $m_{X}$ obtained from the narrow width simulated signal samples produced in gluon fusion.

More…

Observation of a new excited beauty strange baryon decaying to $\Xi^-_\mathrm{b} \pi^+ \pi^-$

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 126 (2021) 252003, 2021.
Inspire Record 1845579 DOI 10.17182/hepdata.102493

The $\Xi^-_\mathrm{b} \pi^+ \pi^-$ invariant mass spectrum is investigated with an event sample of proton-proton collisions at $\sqrt{s} = $ 13 TeV, collected by the CMS experiment at the LHC in 2016-2018 and corresponding to an integrated luminosity of 140 fb$^{-1}$. The ground state $\Xi^-_\mathrm{b}$ is reconstructed via its decays to J$/\psi \Xi^-$ and J$/\psi \Xi^-\Lambda$K$^-$. A narrow resonance, labeled $\Xi_\mathrm{b}$(6100)$^-$, is observed at a $\Xi^-_\mathrm{b} \pi^+ \pi^-$ invariant mass of 6100.3 $\pm$ 0.2 (stat) $\pm$ 0.1 (syst) $\pm$ 0.6 ($\Xi^-_\mathrm{b}$) MeV, where the last uncertainty reflects the precision of the $\Xi^-_\mathrm{b}$ baryon mass. The upper limit on the $\Xi_\mathrm{b}$(6100)$^-$ natural width is determined to be 1.9 MeV at 95% confidence level. Following analogies with the established excited $\Xi_\mathrm{c}$ baryon states, the new $\Xi_\mathrm{b}$(6100)$^-$ resonance and its decay sequence are consistent with the orbitally excited $\Xi^-_\mathrm{b}$ baryon, with spin and parity quantum numbers $J^P=$ 3/2$^-$.

3 data tables

A search for bottom-type, vector-like quark pair production in a fully hadronic final state in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 102 (2020) 112004, 2020.
Inspire Record 1812970 DOI 10.17182/hepdata.99690

A search is described for the production of a pair of bottom-type vector-like quarks (VLQs), each decaying into a b or $\mathrm{\bar{b}}$ quark and either a Higgs or a Z boson, with a mass greater than 1000 GeV. The analysis is based on data from proton-proton collisions at a 13 TeV center-of-mass energy recorded at the CERN LHC, corresponding to a total integrated luminosity of 137 fb$^{-1}$. As the predominant decay modes of the Higgs and Z bosons are to a pair of quarks, the analysis focuses on final states consisting of jets resulting from the six quarks produced in the events. Since the two jets produced in the decay of a highly Lorentz-boosted Higgs or Z boson can merge to form a single jet, nine independent analyses are performed, categorized by the number of observed jets and the reconstructed event mode. No signal in excess of the expected background is observed. Lower limits are set on the VLQ mass at 95% confidence level equal to 1570 GeV in the case where the VLQ decays exclusively to a b quark and a Higgs boson, 1390 GeV for when it decays exclusively to a b quark and a Z boson, and 1450 GeV for when it decays equally in these two modes. These limits represent significant improvements over the previously published VLQ limits.

66 data tables

Measured values of the trigger efficiencies for events with $\HT > 1350\GeV$. The uncertainties are statistical only.

Reconstructed VLQ mass distributions for simulated signal events with a generated VLQ mass $m_{B} = 1200\GeV$. A moderate requirement of $\chi^{2}$/ndf < 2$ is applied to the events. Mass distributions for 4-jet (left), 5-jet (center), and 6-jet (right) events are shown for the three decay modes: bHbH (upper row), bHbZ (middle row), and bZbZ (lower row).

Reconstructed VLQ mass distributions for simulated signal events with a generated VLQ mass $m_{B} = 1200\GeV$. A moderate requirement of $\chi^{2}$/ndf < 2$ is applied to the events. Mass distributions for 4-jet (left), 5-jet (center), and 6-jet (right) events are shown for the three decay modes: bHbH (upper row), bHbZ (middle row), and bZbZ (lower row).

More…

Study of excited $\Lambda_\mathrm{b}^0$ states decaying to $\Lambda_\mathrm{b}^0\pi^+\pi^-$ in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 803 (2020) 135345, 2020.
Inspire Record 1776599 DOI 10.17182/hepdata.93064

A study of excited $\Lambda_\mathrm{b}^0$ baryons is reported, based on a data sample collected in 2016-2018 with the CMS detector at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of up to 140 fb$^{-1}$. The existence of four excited $\Lambda_\mathrm{b}^0$ states: $\Lambda_\mathrm{b}$(5912)$^0$, $\Lambda_\mathrm{b}$(5920)$^0$, $\Lambda_\mathrm{b}$(6146)$^0$, and $\Lambda_\mathrm{b}$(6152)$^0$ in the $\Lambda_\mathrm{b}^0\pi^+\pi^-$ mass spectrum is confirmed, and their masses are measured. The $\Lambda_\mathrm{b}^0\pi^+\pi^-$ mass distribution exhibits a broad excess of events in the region of 6040-6100 MeV, whose origin cannot be discerned with the present data.

2 data tables

Measured mass differences


Version 2
Search for heavy charged long-lived particles in the ATLAS detector in 31.6 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 092007, 2019.
Inspire Record 1718558 DOI 10.17182/hepdata.86565

A search for heavy charged long-lived particles is performed using a data sample of 36.1 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the Large Hadron Collider. The search is based on observables related to ionization energy loss and time of flight, which are sensitive to the velocity of heavy charged particles traveling significantly slower than the speed of light. Multiple search strategies for a wide range of lifetimes, corresponding to path lengths of a few meters, are defined as model-independently as possible, by referencing several representative physics cases that yield long-lived particles within supersymmetric models, such as gluinos/squarks ($R$-hadrons), charginos and staus. No significant deviations from the expected Standard Model background are observed. Upper limits at 95% confidence level are provided on the production cross sections of long-lived $R$-hadrons as well as directly pair-produced staus and charginos. These results translate into lower limits on the masses of long-lived gluino, sbottom and stop $R$-hadrons, as well as staus and charginos of 2000 GeV, 1250 GeV, 1340 GeV, 430 GeV and 1090 GeV, respectively.

60 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Lower mass requirement for signal regions.</b> <ul> <li><a href="86565?version=1&table=Table1">Gluinos and squarks</a></li> <li><a href="86565?version=1&table=Table2">Staus and charginos</a></li> </ul> <b>Discovery regions:</b> <ul> <li><a href="86565?version=1&table=Table3">Yields</a></li> <li><a href="86565?version=1&table=Table6">p0-values and limits</a></li> </ul> <b>Signal yield tables:</b> <ul> <li><a href="86565?version=1&table=Table4">MS-agnostic R-hadron search</a></li> <li><a href="86565?version=1&table=Table5">Full-detector R-hadron search</a></li> <li><a href="86565?version=1&table=Table7">MS-agnostic search for metastable gluino R-hadrons</a></li> <li><a href="86565?version=1&table=Table8">Full-detector direct-stau search</a></li> <li><a href="86565?version=1&table=Table9">Full-detector chargino search</a></li> </ul> <b>Limits:</b> <ul> <li><a href="86565?version=1&table=Table10">Gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table11">Sbottom R-hadron search</a></li> <li><a href="86565?version=1&table=Table12">Stop R-hadron search</a></li> <li><a href="86565?version=1&table=Table13">Stau search</a></li> <li><a href="86565?version=1&table=Table14">Chargino search</a></li> <li><a href="86565?version=1&table=Table15">Meta-stable gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table17">Meta-stable gluino R-hadron search</a></li> </ul> <b>Acceptance and efficiency:</b> <ul> <li><a href="86565?version=1&table=Table16">MS-agnostic R-hadron search</a></li> </ul> <b>Truth quantities:</b> <ul> <li><a href="86565?version=1&table=Table18">Flavor composition of 800 GeV stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table19">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table20">Flavor composition of 800 GeV stop R-hadrons simulated using the Regge model</a></li> <li><a href="86565?version=1&table=Table21">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the Regge model</a></li> </ul> <b>Reinterpretation material:</b> <ul> <li><a href="86565?version=1&table=Table22">ETmiss trigger efficiency as function of true ETmiss</a></li> <li><a href="86565?version=1&table=Table23">Single-muon trigger efficiency as function of |eta| and beta</a></li> <li><a href="86565?version=1&table=Table24">Candidate reconstruction efficiency for ID+Calo selection</a></li> <li><a href="86565?version=1&table=Table25">Candidate reconstruction efficiency for loose selection</a></li> <li><a href="86565?version=1&table=Table26">Efficiency for a loose candidate to be promoted to a tight candidate</a></li> <li><a href="86565?version=1&table=Table27">Resolution and average of reconstructed dE/dx mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table28">Resolution and average of reconstructed ToF mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table29">Resolution and average of reconstructed ToF mass for a given simulated mass for FullDet candidates</a></li> </ul> <p><b>Pseudo-code snippets</b> and <b>example SLHA setups</b> are available in the "Resources" linked on the left, and more detailed reinterpretation material is available at <a href="http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf">http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf</a>.</p>

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Lower mass requirement for signal regions.</b> <ul> <li><a href="86565?version=1&table=Table1">Gluinos and squarks</a></li> <li><a href="86565?version=1&table=Table2">Staus and charginos</a></li> </ul> <b>Discovery regions:</b> <ul> <li><a href="86565?version=1&table=Table3">Yields</a></li> <li><a href="86565?version=1&table=Table6">p0-values and limits</a></li> </ul> <b>Signal yield tables:</b> <ul> <li><a href="86565?version=1&table=Table4">MS-agnostic R-hadron search</a></li> <li><a href="86565?version=1&table=Table5">Full-detector R-hadron search</a></li> <li><a href="86565?version=1&table=Table7">MS-agnostic search for metastable gluino R-hadrons</a></li> <li><a href="86565?version=1&table=Table8">Full-detector direct-stau search</a></li> <li><a href="86565?version=1&table=Table9">Full-detector chargino search</a></li> </ul> <b>Limits:</b> <ul> <li><a href="86565?version=1&table=Table10">Gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table11">Sbottom R-hadron search</a></li> <li><a href="86565?version=1&table=Table12">Stop R-hadron search</a></li> <li><a href="86565?version=1&table=Table13">Stau search</a></li> <li><a href="86565?version=1&table=Table14">Chargino search</a></li> <li><a href="86565?version=1&table=Table15">Meta-stable gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table17">Meta-stable gluino R-hadron search</a></li> </ul> <b>Acceptance and efficiency:</b> <ul> <li><a href="86565?version=1&table=Table16">MS-agnostic R-hadron search</a></li> </ul> <b>Truth quantities:</b> <ul> <li><a href="86565?version=1&table=Table18">Flavor composition of 800 GeV stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table19">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table20">Flavor composition of 800 GeV stop R-hadrons simulated using the Regge model</a></li> <li><a href="86565?version=1&table=Table21">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the Regge model</a></li> </ul> <b>Reinterpretation material:</b> <ul> <li><a href="86565?version=1&table=Table22">ETmiss trigger efficiency as function of true ETmiss</a></li> <li><a href="86565?version=1&table=Table23">Single-muon trigger efficiency as function of |eta| and beta</a></li> <li><a href="86565?version=1&table=Table24">Candidate reconstruction efficiency for ID+Calo selection</a></li> <li><a href="86565?version=1&table=Table25">Candidate reconstruction efficiency for loose selection</a></li> <li><a href="86565?version=1&table=Table26">Efficiency for a loose candidate to be promoted to a tight candidate</a></li> <li><a href="86565?version=1&table=Table27">Resolution and average of reconstructed dE/dx mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table28">Resolution and average of reconstructed ToF mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table29">Resolution and average of reconstructed ToF mass for a given simulated mass for FullDet candidates</a></li> </ul> <p><b>Pseudo-code snippets</b> and <b>example SLHA setups</b> are available in the "Resources" linked on the left, and more detailed reinterpretation material is available at <a href="http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf">http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf</a>.</p>

Lower mass requirement for signal regions.

More…

Measurement of the top quark mass in the all-jets final state at $\sqrt{s}=$ 13 TeV and combination with the lepton+jets channel

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 79 (2019) 313, 2019.
Inspire Record 1711672 DOI 10.17182/hepdata.89051

A top quark mass measurement is performed using 35.9 fb$^{-1}$ of LHC proton-proton collision data collected with the CMS detector at $\sqrt{s} =$ 13 TeV. The measurement uses the $\mathrm{t\overline{t}}$ all-jets final state. A kinematic fit is performed to reconstruct the decay of the $\mathrm{t\overline{t}}$ system and suppress the multijet background. Using the ideogram method, the top quark mass ($m_\mathrm{t}$) is determined, simultaneously constraining an additional jet energy scale factor (JSF). The resulting value of $m_\mathrm{t}$ = 172.34 $\pm$ 0.20 (stat+JSF) $\pm$ 0.70 (syst) GeV is in good agreement with previous measurements. In addition, a combined measurement that uses the $\mathrm{t\overline{t}}$ lepton+jets and all-jets final states is presented, using the same mass extraction method, and provides an $m_\mathrm{t}$ measurement of 172.26 $\pm$ 0.07 (stat+JSF) $\pm$ 0.61 (syst) GeV. This is the first combined $m_\mathrm{t}$ extraction from the lepton+jets and all-jets channels through a single likelihood function.

1 data table

Measured top quark mass $m_{t}$


Studies of B$^*_\mathrm{s2}(5840)^0$ and B$_\mathrm{s1}(5830)^0$ mesons including the observation of the B$^*_\mathrm{s2}(5840)^0\to$ B$^0$K$_\mathrm{S}^0$ decay in proton-proton collisions at $\sqrt{s}=$8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 939, 2018.
Inspire Record 1693614 DOI 10.17182/hepdata.85740

Measurements of $\mathrm{B}^*_\mathrm{s2}(5840)^0$ and $\mathrm{B}_\mathrm{s1}(5830)^0$ mesons are performed using a data sample of proton-proton collisions corresponding to an integrated luminosity of 19.6 fb$^{-1}$, collected with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV. The analysis studies $P$-wave $\mathrm{B}^0_\mathrm{S}$ meson decays into $\mathrm{B}^{(*)+}\mathrm{K}^-$ and $\mathrm{B}^{(*)0}\mathrm{K}^0_\mathrm{S}$, where the $\mathrm{B}^+$ and $\mathrm{B}^0$ mesons are identified using the decays $\mathrm{B}^+\to\mathrm{J}/\psi\,\mathrm{K}^+$ and $\mathrm{B}^0\to\mathrm{J}/\psi\,\mathrm{K}^*(892)^0$. The masses of the $P$-wave $\mathrm{B}^0_\mathrm{S}$ meson states are measured and the natural width of the $\mathrm{B}^*_\mathrm{s2}(5840)^0$ state is determined. The first measurement of the mass difference between the charged and neutral $\mathrm{B}^*$ mesons is also presented. The $\mathrm{B}^*_\mathrm{s2}(5840)^0$ decay to $\mathrm{B}^0\mathrm{K}^0_\mathrm{S}$ is observed, together with a measurement of its branching fraction relative to the $\mathrm{B}^*_\mathrm{s2}(5840)^0\to\mathrm{B}^+\mathrm{K}^-$ decay.

12 data tables

The $\mathrm{J}/\psi\mathrm{K}^+$ invariant mass distribution in data

The $\mathrm{J}/\psi\mathrm{K}^{*0}$ invariant mass distribution in data

The $\mathrm{B}^+\pi^-$ invariant mass distribution of the selected candidates in data

More…

Measurement of the top quark mass with lepton+jets final states using pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 891, 2018.
Inspire Record 1671499 DOI 10.17182/hepdata.85702

The mass of the top quark is measured using a sample of $\mathrm{t\overline{t}}$ events collected by the CMS detector using proton-proton collisions at $\sqrt{s} =$ 13 TeV at the CERN LHC. Events are selected with one isolated muon or electron and at least four jets from data corresponding to an integrated luminosity of 35.9 fb$^{-1}$. For each event the mass is reconstructed from a kinematic fit of the decay products to a $\mathrm{t\overline{t}}$ hypothesis. Using the ideogram method, the top quark mass is determined simultaneously with an overall jet energy scale factor (JSF), constrained by the mass of the W boson in $\mathrm{q\overline{q}'}$ decays. The measurement is calibrated on samples simulated at next-to-leading order matched to a leading-order parton shower. The top quark mass is found to be 172.25 $\pm$ 0.08 (stat+JSF) $\pm$ 0.62 (syst) GeV. The dependence of this result on the kinematic properties of the event is studied and compared to predictions of different models of $\mathrm{t\overline{t}}$ production, and no indications of a bias in the measurements are observed.

1 data table

Measured top quark mass $m_{t}$


Search for a heavy Higgs boson decaying into a $Z$ boson and another heavy Higgs boson in the $\ell\ell bb$ final state in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 783 (2018) 392-414, 2018.
Inspire Record 1665828 DOI 10.17182/hepdata.82527

A search for a heavy neutral Higgs boson, $A$, decaying into a $Z$ boson and another heavy Higgs boson, $H$, is performed using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s} = 13$ TeV recorded in 2015 and 2016 by the ATLAS detector at the Large Hadron Collider. The search considers the $Z$ boson decaying to electrons or muons and the $H$ boson into a pair of $b$-quarks. No evidence for the production of an $A$ boson is found. Considering each production process separately, the 95% confidence-level upper limits on the $pp\rightarrow A\rightarrow ZH$ production cross-section times the branching ratio $H\rightarrow bb$ are in the range of 14-830 fb for the gluon-gluon fusion process and 26-570 fb for the $b$-associated process for the mass ranges 130-700 GeV of the $H$ boson and process for the mass ranges 130-700 GeV of the $H$ boson and 230-800 GeV of the $A$ boson. The results are interpreted in the context of the two-Higgs-doublet model.

134 data tables

The signal efficiency for the production modes (gluon-gluon fusion and b-associated production) and the signal regions used in the analysis. The efficiency denominator has the total number of generated MC events. The numerator includes the events passing the full signal region selection, including the mbb window cuts. The table shows for each signal mass pair (mA, mH) 3 efficiencies corresponding to the two production modes in the two categories, 2tag and 3tag. These corresponds to "nb = 2 category" and "nb >= 3 category", respectively, of the preprint. No numbers for gluon-gluon fusion in the 3tag category are provided since those are not used in the analysis. The efficiencies are given in fractions.

The cross section times BR(A->ZH) times BR(H->bb) limits for a narrow width A boson produced via gluon-gluon fusion. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The result refers to the nb=2 category only.

The cross section times BR(A->ZH) times BR(H->bb) limits for a narrow width A boson produced in association with b-quarks. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The result refers to the combination of the nb=2 and nb>=3 categories.

More…