Measurement of alpha-s from the moment of particle momenta within jets from e+ e- annihilation

The AMY collaboration Lee, K.B. ; Sagawa, H. ; Chung, Y.S. ; et al.
Phys.Lett.B 313 (1993) 469-474, 1993.
Inspire Record 356468 DOI 10.17182/hepdata.51361

We present a study of the third moment of the inclusive momentum distribution of particles within jets produced by e + e - annihilation at TRISTAN. In this analysis, the QCD coupling strength α s is determined by fits to the prediction of the Next-to-Leading Logarithm Parton-Shower model. The measured value of α s (57.9 GeV ) = 0.134 -0.005 +0.006 .

1 data table

No description provided.


Measurements of cross-section and asymmetry for e+ e- ---> b anti-b and heavy quark fragmentation at KEK TRISTAN

The AMY collaboration Liu, F. ; Chinitz, L.M. ; Abe, K. ; et al.
Phys.Rev.D 49 (1994) 4339-4347, 1994.
Inspire Record 381324 DOI 10.17182/hepdata.22547

Using 773 muons found in hadronic events from 142 pb−1 of data at a c.m. energy of 57.8 GeV, we extract the cross section and forward-backward charge asymmetry for the e+e−→bb¯ process, and the heavy quark fragmentation function parameters for the Peterson model. For the analysis of the e+e−→bb¯ process, we use a method in which the behavior of the c quark and lighter quarks is assumed, with only that of the b quark left indeterminate. The cross section and asymmetry for e+e−→bb¯ are found to be Rb = 0.57 ± 0.06(stat) ± 0.08(syst) and Ab = −0.59 ± 0.09 ± 0.09, respectively. They are consistent with the standard model predictions. For the study of the fragmentation function we use the variable 〈xE〉, the fraction of the beam energy carried by the heavy hadrons. We obtain 〈xE〉c=0.56−0.05−0.03+0.04+0.03 and 〈xE〉b=0.65−0.04−0.06+0.06+0.05, respectively. These are in good agreement with previously measured values.

4 data tables

No description provided.

No description provided.

Here X=E(hadron)/E(beam).

More…

Forward - backward charge asymmetry of quark pairs produced at the KEK TRISTAN e+ e- collider

The AMY collaboration Stuart, D. ; Breedon, R.E. ; Chinitz, L.M. ; et al.
Phys.Rev.D 49 (1994) 3098-3105, 1994.
Inspire Record 378569 DOI 10.17182/hepdata.22552

We report on a measurement of the forward-backward charge asymmetry in e+e−→qq¯ at KEK TRISTAN, where the asymmetry is near maximum. We sum over all flavors and measure the asymmetry by determining the charge of the quark jets. In addition we exploit flavor dependencies in the jet charge determination to enhance the contributions of certain flavors. This provides a check on the asymmetries of individual flavors. The measurement agrees with the standard model expectations.

1 data table

Forward--backward asymmetry summed over all flavours of quarks.


Measurement of alpha(s) using NLLA + O (alpha-s**2) in e+ e- annihilation at s**(1/2) = 58-GeV

The AMY collaboration Kim, D.Y. ; Kang, J.S. ; Myung, S.S. ; et al.
Phys.Lett.B 420 (1998) 233-240, 1998.
Inspire Record 455114 DOI 10.17182/hepdata.28221

A measurement of the strong coupling constant α S is presented using hadronic events produced in e + e − annihilations at s =58.0 GeV from the AMY detector at TRISTAN. The measurement is based on comparisons of the distributions of thrust, heavy jet mass, total jet broadening, wide jet broadening, and energy-energy correlations with QCD calculations resummed up to next-to-leading-logarithms matched with the O ( α S 2 ) perturbative calculation. Combining the results of the individual evaluations, we find α S (58 GeV )=0.132±0.006 .

1 data table

No description provided.


A measurement of the photon structure function F2(gamma) at Q**2 = 6.8-GeV**2.

The AMY collaboration Kojima, T. ; Nozaki, T. ; Abe, K. ; et al.
Phys.Lett.B 400 (1997) 395-400, 1997.
Inspire Record 441558 DOI 10.17182/hepdata.28320

The photon structure function F 2 γ has been measured at an average Q 2 value of 6.8 GeV 2 using data collected by the AMY detector at the TRISTAN e + e − collider. The measured F 2 γ is compared with several QCD-based parton density models.

1 data table

No description provided.


Some Features of the Reaction p p --> Delta++ (1236) n at 6-GeV/c

Mountz, J.D. ; Smith, Gerald A. ; Lennox, Arlene J. ; et al.
Phys.Rev.D 12 (1975) 1211, 1975.
Inspire Record 99855 DOI 10.17182/hepdata.24861

Approximately 12 000 examples of the reaction pp→Δ++(1236)n have been identified at 6 GeV / c in a spark-chamber experiment performed at the Argonne National Laboratory Zero Gradient Synchrotron. The experimental invariant-mass and momentum-transfer-squared distributions are in agreement with predictions of the Chew-Low one-pion-exchange model, suitably modified to account for form factors or absorption. The data have been extrapolated from the physical region to the pion pole. It is found that the Dürr-Pilkuhn and Benecke-Dürr models, in conjunction with quadratic extrapolations in t, reproduce the known on-mass-shell dependence of the cross section for the elastic π+p scattering.

2 data tables

No description provided.

No description provided.


Dielectron yields in p + d and p + p collisions at 4.9-GeV

Huang, H.Z. ; Beedoe, S. ; Bougteb, M. ; et al.
Phys.Lett.B 297 (1992) 233-237, 1992.
Inspire Record 338830 DOI 10.17182/hepdata.28996

The dielectron yield in p + d and p + p collisions at a beam kinetic energy of 4.9 GeV has been measured using the Dilepton Spectrometer (DLS) at the Bevalac. The measured ratio of the yield in p + d to that in p + p collisions, 1.92±0.06, is in disagreement with the assumptions of model calculations applied to our ealier p +Be data, where it was found that p + n bremsstrahlung dominated other sources. While the measured ratio is consistent with a hadron-like origin of the dielectrons, the contributions of known hadronic decays are smaller than the measured yield from p + p collissions.

2 data tables

Background subtracted data uncorrected for acceptance.

Background subtracted data uncorrected for acceptance.


First Observation of Dielectron Production at the Bevalac

The DLS collaboration Roche, G. ; Claesson, G. ; Hendrie, D. ; et al.
Phys.Rev.Lett. 61 (1988) 1069-1072, 1988.
Inspire Record 268588 DOI 10.17182/hepdata.38105

We have begun a program to measure dielectron production in p-nucleus and nucleus-nucleus collisions at the LBL Bevalac. Results are presented for the reaction p+Be at 4.9 GeV. For the first time, direct dilepton production is observed below 10 GeV incident energy. The cross sections are discussed and compared to previous data at higher energies. The observation of a structure at a mass of about 275 MeV suggests that pion annihilation may be the dominant production mechanism in this mass range.

2 data tables

A IS TARGET ATOMIC MASS NUMBER.

A IS TARGET ATOMIC MASS NUMBER.


Mass and transverse momentum dependence of dielectron production in p + d and p + p collisions at 4.9-GeV

The DLS collaboration Huang, H.Z. ; Beedoe, S. ; Bougteb, M. ; et al.
Phys.Rev.C 49 (1994) 314-319, 1994.
Inspire Record 356615 DOI 10.17182/hepdata.38156

Dielectron production in p+d and p+p collisions at the beam kinetic energy of 4.9 GeV has been measured with the Dilepton Spectrometer. Features of the dielectron cross section have been studied with cuts on the mass and transverse momentum of the pairs. The spectra for several regions of phase space are presented as a function of the pair mass and transverse momentum.

8 data tables

Mass distribution.

Mass distribution.

Transverse momentum distribution.

More…

New limits on the masses of the selectron and photino

The AMY collaboration Sugimoto, Y. ; Abe, K. ; Fujii, Y. ; et al.
Phys.Lett.B 369 (1996) 86-92, 1996.
Inspire Record 403978 DOI 10.17182/hepdata.38437

A study of e + e − annihilations into final states containing a single energetic photon with no accompanying particles is made at a center of mass energy of 57.8 GeV. The measured cross section is consistent with expectations from standard model processes and is used to set limits on the masses of the scalar electron and photino particles predicted by supersymmetry theories. If the photino is assumed to be massless, the 90% confidence level lower limit on the mass of the degenerate scalar electron is 65.5 GeV. If the results of all the single photon experiments are combined, this lower limit increases to 79.3 GeV.

1 data table

No description provided.