Measurement of the tau branching fractions into leptons

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 507 (2001) 47-60, 2001.
Inspire Record 552995 DOI 10.17182/hepdata.54875

Using data collected with the L3 detector near the Z resonance, corresponding to an integrated luminosity of 150pb-1, the branching fractions of the tau lepton into electron and muon are measured to be B(tau->e nu nu) = (17.806 +- 0.104 (stat.) +- 0.076 (syst.)) %, B(tau->mu nu nu) = (17.342 +- 0.110 (stat.) +- 0.067 (syst.)) %. From these results the ratio of the charged current coupling constants of the muon and the electron is determined to be g_mu/g_e = 1.0007 +- 0.0051. Assuming electron-muon universality, the Fermi constant is measured in tau lepton decays as G_F = (1.1616 +- 0.0058) 10^{-5} GeV^{-2}. Furthermore, the coupling constant of the strong interaction at the tau mass scale is obtained as alpha_s(m_tau^2) = 0.322 +- 0.009 (exp.) +- 0.015 (theory).

1 data table

First DSYS error is experimental, the second is from theory.


Consistent measurements of alpha(s) from precise oriented event shape distributions.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 14 (2000) 557-584, 2000.
Inspire Record 522656 DOI 10.17182/hepdata.13245

An updated analysis using about 1.5 million events recorded at $\sqrt{s} = M_Z$ with the DELPHI detector in 1994 is presented. Eighteen infrared and collinear safe event shape observables are measured as a function of the polar angle of the thrust axis. The data are compared to theoretical calculations in ${\cal O} (\alpha_s^2)$ including the event orientation. A combined fit of $\alpha_s$ and of the renormalization scale $x_{\mu}$ in $\cal O(\alpha_s^2$) yields an excellent description of the high statistics data. The weighted average from 18 observables including quark mass effects and correlations is $\alpha_s(M_Z^2) = 0.1174 \pm 0.0026$. The final result, derived from the jet cone energy fraction, the observable with the smallest theoretical and experimental uncertainty, is $\alpha_s(M_Z^2) = 0.1180 \pm 0.0006 (exp.) \pm 0.0013 (hadr.) \pm 0.0008 (scale) \pm 0.0007 (mass)$. Further studies include an $\alpha_s$ determination using theoretical predictions in the next-to-leading log approximation (NLLA), matched NLLA and $\cal O(\alpha_s^2$) predictions as well as theoretically motivated optimized scale setting methods. The influence of higher order contributions was also investigated by using the method of Pad\'{e} approximants. Average $\alpha_s$ values derived from the different approaches are in good agreement.

33 data tables

The weighted value of ALPHA-S from all the measured observables using experimentally optimized renormalization scale values and corrected for the b-mass toleading order.

The value of ALPHA-S derived from the JCEF and corrected for heavy quark mass effects. The quoted errors are respectively due to experimental error, hadronization, renormalization scale and heavy quark mass correction uncertainties.

Energy Energy Correlation EEC.

More…

Energy dependence of event shapes and of alpha(s) at LEP-2.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 456 (1999) 322-340, 1999.
Inspire Record 499183 DOI 10.17182/hepdata.49129

Infrared and collinear safe event shape distributions and their mean values are determined using the data taken at five different centre of mass energies above M Z with the DELPHI detector at LEP. From the event shapes, the strong coupling α s is extracted in O ( α s 2 ), NLLA and a combined scheme using hadronisation corrections evaluated with fragmentation model generators as well as using an analytical power ansatz. Comparing these measurements to those obtained at M Z , the energy dependence (running) of α s is accessible. The logarithmic energy slope of the inverse strong coupling is measured to be d α −1 s d log (E cm ) =1.39±0.34( stat )±0.17( syst ) , in good agreement with the QCD expectation of 1.27.

47 data tables

Moments of the (1-THRUST) distributions at cm energies 133, 161, 172 and 183 GeV.

Moments of the Thrust Major distributions at cm energies 133, 161, 172 and 183 GeV.

Moments of the Thrust Minor distributions at cm energies 133, 161, 172 and 183 GeV.

More…

A measurement of alpha(s)(Q**2) from the Gross-Llewellyn Smith sum rule.

Kim, J.H. ; Harris, Deborah A. ; Arroyo, C.G. ; et al.
Phys.Rev.Lett. 81 (1998) 3595-3598, 1998.
Inspire Record 475039 DOI 10.17182/hepdata.19536

We extract a set of values for the Gross-Llewellyn Smith sum rule at different values of 4-momentum transfer squared ($Q^{2}$), by combining revised CCFR neutrino data with data from other neutrino deep-inelastic scattering experiments for $1 < Q^2 < 15 GeV^2/c^2$. A comparison with the order $\alpha^{3}_{s}$ theoretical predictions yields a determination of $\alpha_{s}$ at the scale of the Z-boson mass of $0.114 \pm^{.009}_{.012}$. This measurement provides a new and useful test of perturbative QCD at low $Q^2$, because of the low uncertainties in the higher order calculations.

3 data tables

No description provided.

Total GLS integral and ALPHAS for each bin in Q2. Systematic errors are correlated in different Q2 bins. The second DSYS error in ALPHAS is due to the uncertainty in the theory.

ALPHAS extrapolated to the Z0 mass. The second DSYS error is due to the uncertainty in the theory.


Study of hadronic events and measurements of alpha(s) between 30-GeV and 91-GeV.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 411 (1997) 339-353, 1997.
Inspire Record 445998 DOI 10.17182/hepdata.47465

We have studied the structure of hadronic events with a hard, isolated photon in the final state (e + e − → Z → hadrons + γ) in the 3.6 million hadronic events collected with the L3 detector at centre-of-mass energies around 91 GeV. The centre-of-mass energy of the hadronic system is in the range 30 GeV to 86 GeV. Event shape variables have been measured at these reduced centre-of-mass energies and have been compared with the predictions of different QCD Monte Carlo programs. The event shape variables and the energy dependence of their mean values are well reproduced by QCD models. We fit distributions of several global event shape variables to resummed O (α s 2 ) calculations to determine the strong coupling constant α s over a wide range of energies. We find that the strong coupling constant α s decreases with increasing energy, as expected from QCD.

6 data tables

No description provided.

No description provided.

No description provided.

More…

QCD studies and determination of alpha(s) in e+ e- collisions at s**(1/2) = 161-GeV and 172-GeV.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 404 (1997) 390-402, 1997.
Inspire Record 443563 DOI 10.17182/hepdata.47483

We present a study of the structure of hadronic events recorded by the L3 detector at LEP at the center of mass energies of 161 and 172 GeV. The data sample corresponds to an integrated luminosity of 21.25 pb −1 collected during the high energy runs of 1996. The distributions of event shape variables and the energy dependence of their mean values are well reproduced by QCD models. From a comparison of the data with resummed O ( α s 2 ) QCD calculations, we determine the strong coupling constant at the two energies. Combining this with our earlier measurements we find that the strong coupling constant decreases with increasing energy as expected in QCD.

8 data tables

No description provided.

Average jet multiplicity using JADE algorithm.

Average jet multiplicity using Durham algorithm.

More…

A measurement of alpha(s) from the scaling violation in e+ e- annihilation.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 398 (1997) 194-206, 1997.
Inspire Record 428178 DOI 10.17182/hepdata.47581

The hadronic fragmentation functions of the various quark flavours and of gluons are measured in a study of the inclusive hadron production from Z 0 decays with the DELPHI detector and are compared with the fragmentation functions measured elsewhere at energies between 14 GeV and 91 GeV. A large scaling violation is observed, which is used to extract the strong coupling constant from a fit using a numerical integration of the second order DGLAP evolution equations. The result is α s ( M Z ) = 0.124 −0.007 +0.006 (exp) ± 0.009(theory) where the first error represents the experimental uncertainty and the second error is due to the factorization and renormalization scale dependence.

2 data tables

SIG(Q=BQ, Q=CQ, Q=UDS) corresponds to BQ, CQ, and U,D,S quarks fragmentation into charged hadron.

alpha_s was evaluated from the scaling violation of the fragmentation func tions. The data from other experiments are used for the fitting procedure.


Study of the structure of hadronic events and determination of alpha-s at s**(1/2) = 130-GeV and 136-GeV

The L3 collaboration Acciarri, M. ; Adam, A. ; Adriani, O. ; et al.
Phys.Lett.B 371 (1996) 137-148, 1996.
Inspire Record 404916 DOI 10.17182/hepdata.48010

We present a study of the structure of hadronic events recorded by the L3 detector at center-of-mass energies of 130 and 136 GeV. The data sample corresponds to an integrated luminosity of 5 pb −1 collected during the high energy run of 1995. The shapes of the event shape distributions and the energy dependence of their mean values are well reproduced by QCD models. From a comparison of the data with resummed O (α s 2 ) QCD calculations, we determine the strong coupling constant to be α s (133 GeV) = 0.107 ± 0.005(exp) ± 0.006(theor).

3 data tables

Mean values of the event shape variables.

Mean charged particle multiplicity.

The value of alpha_s from the fits to the event shape variables : thrust (THRUST), scale heavy jet mass (MH**2/S), total jet broadening (BT)and wide jet broadening (BW). The last value is combined result (COMBINED). The second systematic error is due to uncertainties in the theory.


Energy dependence of the differences between the quark and gluon jet fragmentation

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 70 (1996) 179-196, 1996.
Inspire Record 403254 DOI 10.17182/hepdata.48064

Three jet events arising from decays of the Z boson, collected by the DELPHI detector, were used to measure differences in quark and gluon fragmentation. Gluon jets were anti-tagged by identifying b quark jets. Unbiased quark jets came from events with two jets plus one photon. Quark and gluon jet properties in different energy ranges were compared for the first time within the same detector. Quark and gluon jets of nearly the same energy in symmetric three jet event topologies were also compared. Using three independent methods, the average value of the ratio of the mean charged multiplicities of gluon and quark jets is $$< r >=1.241 pm 0.015 (stat.)pm 0.025 (syst.).$$ Gluon jets are broader and produce fragments with a softer energy spectrum than quark jets of equivalent energy. The string effect has been observed in fully symmetric three jet events. The measured ratio Rγ of the charged particle flow in the qq̅ inter-jet region of the qq̅g and qq̅γ samples agrees with the perturbative QCD expectation. The dependence of the mean charged multiplicity on the hadronic center-of-mass energy was analysed in photon plus n-jet events. The value for αs(MZ) determined from these data using a QCD prediction with corrections at leading and next-to-leading order is $$←pha_s(M_Z)=0.116pm 0.003 (stat.)pm 03009 (syst.).$$

2 data tables

No description provided.

Durham and JADE algoritms were used.


Comparison of a new calculation of energy-energy correlations with e+ e- ---> hadrons data at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.D 52 (1995) 4240-4244, 1995.
Inspire Record 39718 DOI 10.17182/hepdata.22336

We have compared a new QCD calculation by Clay and Ellis of energy-energy correlations (EEC’s) and their asymmetry (AEEC’s) in e+e− annihilation into hadrons with data collected by the SLD experiment at SLAC. From fits of the new calculation, complete at O(αs2), we obtained αs(MZ2)=0.1184±0.0031(expt)±0.0129(theory) (EEC) and αs(MZ2)=0.1120±0.0034(expt)±0.0036(theory) (AEEC). The EEC result is significantly lower than that obtained from comparable fits using the O(αs2) calculation of Kunszt and Nason.

1 data table

The data are compared to the predictions of Monte-Carlo. Two values of ALPHA_S are corresponded the two theoretical models used in the comparison.