A study of the charge conjugation and parity ($CP$) properties of the interaction between the Higgs boson and $\tau$-leptons is presented. The study is based on a measurement of $CP$-sensitive angular observables defined by the visible decay products of $\tau$-lepton decays, where at least one hadronic decay is required. The analysis uses 139 fb$^{-1}$ of proton$-$proton collision data recorded at a centre-of-mass energy of $\sqrt{s}= 13$ TeV with the ATLAS detector at the Large Hadron Collider. Contributions from $CP$-violating interactions between the Higgs boson and $\tau$-leptons are described by a single mixing angle parameter $\phi_{\tau}$ in the generalised Yukawa interaction. Without assuming the Standard Model hypothesis for the $H\rightarrow\tau\tau$ signal strength, the mixing angle $\phi_{\tau}$ is measured to be $9^{\circ} \pm 16^{\circ}$, with an expected value of $0^{\circ} \pm 28^{\circ}$ at the 68% confidence level. The pure $CP$-odd hypothesis is disfavoured at a level of 3.4 standard deviations. The results are compatible with the predictions for the Higgs boson in the Standard Model.
A measurement of the top-quark mass ($m_t$) in the $t\bar{t}\rightarrow~\textrm{lepton}+\textrm{jets}$ channel is presented, with an experimental technique which exploits semileptonic decays of $b$-hadrons produced in the top-quark decay chain. The distribution of the invariant mass $m_{\ell\mu}$ of the lepton, $\ell$ (with $\ell=e,\mu$), from the $W$-boson decay and the muon, $\mu$, originating from the $b$-hadron decay is reconstructed, and a binned-template profile likelihood fit is performed to extract $m_t$. The measurement is based on data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ of $\sqrt{s} = 13~\textrm{TeV}$$pp$ collisions provided by the Large Hadron Collider and recorded by the ATLAS detector. The measured value of the top-quark mass is $m_{t} = 174.41\pm0.39~(\textrm{stat.})\pm0.66~(\textrm{syst.})\pm0.25~(\textrm{recoil})~\textrm{GeV}$, where the third uncertainty arises from changing the PYTHIA8 parton shower gluon-recoil scheme, used in top-quark decays, to a recently developed setup.
Differential cross-sections for proton-proton elastic scattering have been measured covering the angular range from 50° to 90° c.m. at twelve incident momenta from 1.3 to 3.0 GeV/c. The angular distributions are quite smooth, but there is evidence of structure in the energy dependence of fixed-angle cross-sections at |t| ∼ 1 (GeV)2.
No description provided.
A polarized proton beam extracted from SATURNE II and the Saclay polarized proton target were used to measure the rescattering observables$K_{onno}$and
No description provided.
A polarized proton beam extracted from SATURNE II, the Saclay polarized target with$^6$Li compounds, and
The polarization transfer parameter KNN measured with polarized protons on the polarized LiH and LiD targets. The relative uncertainty due to the P-C analysing power is +- 6 PCT.
Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
This paper presents direct searches for lepton flavour violation in Higgs boson decays, $H\rightarrow e\tau$ and $H\rightarrow\mu\tau$, performed using data collected with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Leptonic ($\tau \rightarrow \ell \nu_\ell \nu_\tau$) and hadronic ($\tau \rightarrow $ hadrons $ \nu_\tau$) decays of the $\tau$-lepton are considered. Two background estimation techniques are employed: the MC-template method, based on data-corrected simulation samples, and the Symmetry method, based on exploiting the symmetry between electrons and muons in the Standard Model backgrounds. No significant excess of events is observed and the results are interpreted as upper limits on lepton-flavour-violating branching ratios of the Higgs boson. The observed (expected) upper limits set on the branching ratios at 95% confidence level, $\mathcal{B}(H\rightarrow e\tau)<0.20\%$ (0.12%) and $\mathcal{B}(H\rightarrow \mu\tau)<0.18\%$ (0.09%), are obtained with the MC-template method from a simultaneous measurement of potential $H \rightarrow e\tau$ and $H \rightarrow\mu\tau$ signals. The best-fit branching ratio difference, $\mathcal{B}(H\rightarrow \mu\tau)- \mathcal{B}(H\rightarrow e\tau)$, measured with the Symmetry method in the channel where the $\tau$-lepton decays to leptons, is (0.25 $\pm$ 0.10)%, compatible with a value of zero within 2.5$\sigma$.
Fit results of the independent searches (1 POI) showing upper limits at 95% C.L. on the LFV branching ratios of the Higgs boson $H\to e\tau$. The results from standalone channel/categories fits are compared with the results of the combined fit.
NN score distribution, after an independent fit of the $H\to \mu\tau$ signal, obtained by fitting the data of the Symmetry $\ell\tau_{\ell'}$ channel, for the $\mu\tau_{e}$ final state in the non-VBF category.
Measurements of the suppression and correlations of dijets is performed using 3 $\mu$b$^{-1}$ of Xe+Xe data at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV collected with the ATLAS detector at the LHC. Dijets with jets reconstructed using the $R=0.4$ anti-$k_t$ algorithm are measured differentially in jet $p_{\text{T}}$ over the range of 32 GeV to 398 GeV and the centrality of the collisions. Significant dijet momentum imbalance is found in the most central Xe+Xe collisions, which decreases in more peripheral collisions. Results from the measurement of per-pair normalized and absolutely normalized dijet $p_{\text{T}}$ balance are compared with previous Pb+Pb measurements at $\sqrt{s_{\mathrm{NN}}} =5.02$ TeV. The differences between the dijet suppression in Xe+Xe and Pb+Pb are further quantified by the ratio of pair nuclear-modification factors. The results are found to be consistent with those measured in Pb+Pb data when compared in classes of the same event activity and when taking into account the difference between the center-of-mass energies of the initial parton scattering process in Xe+Xe and Pb+Pb collisions. These results should provide input for a better understanding of the role of energy density, system size, path length, and fluctuations in the parton energy loss.
Per-pair normalized xJ distribution evaluated in four centrality intervals and given pT1 interval.
A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on $pp$ collision data corresponding to an integrated luminosity of 138 fb$^{-1}$ at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV.
The inclusive cross section of top quark-antiquark pairs produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV is measured in the lepton$+$jets and dilepton decay channels. The data sample corresponds to 9.7 fb${}^{-1}$ of integrated luminosity recorded with the D0 detector during Run II of the Fermilab Tevatron Collider. Employing multivariate analysis techniques we measure the cross section in the two decay channels and we perform a combined cross section measurement. For a top quark mass of 172.5 GeV, we measure a combined inclusive top quark-antiquark pair production cross section of $\sigma_{t\bar{t}} = 7.26 \pm 0.13\,(\mathrm{stat.})\,^{+0.57}_{-0.50}\,(\mathrm{syst.})$ pb which is consistent with standard model predictions. We also perform a likelihood fit to the measured and predicted top quark mass dependence of the inclusive cross section, which yields a measurement of the pole mass of the top quark. The extracted value is $m_t = 172.8 \pm 1.1\,(\mathrm{theo.})\,^{+3.3}_{-3.1}\,(\mathrm{exp.})$ GeV.