Low energy analyzing powers in pion proton elastic scattering.

Meier, R. ; Croni, M. ; Bilger, R. ; et al.
Phys.Lett.B 588 (2004) 155-162, 2004.
Inspire Record 645151 DOI 10.17182/hepdata.26962

Analyzing powers of pion-proton elastic scattering have been measured at PSI with the Low Energy Pion Spectrometer LEPS as well as a novel polarized scintillator target. Angular distributions between 40 and 120 deg (c.m.) were taken at 45.2, 51.2, 57.2, 68.5, 77.2, and 87.2 MeV incoming pion kinetic energy for pi+ p scattering, and at 67.3 and 87.2 MeV for pi- p scattering. These new measurements constitute a substantial extension of the polarization data base at low energies. Predictions from phase shift analyses are compared with the experimental results, and deviations are observed at low energies.

11 data tables

Analyzing power for PI+ P elastic scattering at incidient kinetic energy 87.2 MeV from the data set 1.

Analyzing power for PI+ P elastic scattering at incidient kinetic energy 68.4 MeV from the data set 1.

Analyzing power for PI+ P elastic scattering at incidient kinetic energy 57.2 MeV from the data set 1.

More…

Measurement of spin observables in neutron proton elastic scattering. I: Correlation parameters

Arnold, J. ; van den Brandt, B. ; Daum, M. ; et al.
Eur.Phys.J.C 17 (2000) 67-81, 2000.
Inspire Record 537914 DOI 10.17182/hepdata.43392

The spin correlation parameters$A_{oonn}, A_{ooss}, A_{oosk}, A_{ookk}$and the analyzing power$A_{oono}$have been measured i

6 data tables

Values of the coefficients for the linear combinations of the spin correlation parameters Cpq measurements for the four different beam and target polarisation orientations. For the (z,z) and (y,y) configurations the coefficients are identical for all incident kinetic energies.

Measurement of the analysing power. Statistical errors only are shown. For the systematic errors see the systematics section above. Note that there are two overlapping angular settings.

Measurements of the spin correlation parameter CNN. Statistical errors onlyare shown. For the systematics see the systematic section above. Note the two overlapping angular settings.

More…

Measurement of spin observables in neutron proton elastic scattering. II: Rescattering parameters

Arnold, J. ; van den Brandt, B. ; Daum, M. ; et al.
Eur.Phys.J.C 17 (2000) 83-95, 2000.
Inspire Record 537915 DOI 10.17182/hepdata.43295

A double scattering experiment, performed at the Paul-Scherrer-Institut (PSI), has measured a large variety of spin observables for free np elastic scattering from 260 to 535 MeV in the c.m. angle ran

12 data tables

Relative uncertainties on the carbon polarimeter analysing power (AC).

Relative uncertainty in the beam polarisation (PB).

Measurements of DNN with statistical errors only.

More…

Polarization transfer observables in pi d elastic scattering

Suft, G. ; Amaudruz, P. ; Boschitz, E. ; et al.
Phys.Lett.B 425 (1998) 19-24, 1998.
Inspire Record 472904 DOI 10.17182/hepdata.28205

Polarization transfer observables in π + d elastic scattering have been measured for the first time. Four polarization transfer parameters were determined at pion energies T π =134 MeV and 180 MeV at scattering angles θ π ,C.M. between 100° and 140° using a deuteron target polarized perpendicular to the scattering plane and a deuteron tensor polarimeter. The data are compared to different predictions from the SAID phase shift analysis and Faddeev calculations.

2 data tables

Systematic and statistical errors are added in quadrature.

Systematic and statistical errors are added in quadrature.


Kinetic energy spectrum and polarization of neutrons from the reaction C-12(p(pol.),n(pol.))X at 590-MeV.

Arnold, J. ; van den Brandt, B. ; Daum, M. ; et al.
Eur.Phys.J.A 2 (1998) 411-415, 1998.
Inspire Record 477089 DOI 10.17182/hepdata.43498

The kinetic energy spectrum and the polarization of the PSI neutron beam produced in the reaction 12C(p,n)X at 0° with 590 MeV polarized protons were investigated. A strong energy dependence of the ne

1 data table

No description provided.


Spin observables in neutron proton elastic scattering.

Ahmidouch, A. ; Arnold, J. ; van den Brandt, B. ; et al.
Eur.Phys.J.C 2 (1998) 627-641, 1998.
Inspire Record 471273 DOI 10.17182/hepdata.11376

The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$

20 data tables

Position 'A' (see text for explanation).

Position 'A' (see text for explanation).

Position 'A' (see text for explanation).

More…

Measurement of pi+ p (polarized) analyzing power at 68.3-MeV

Wieser, R. ; Denig, A. ; von Hagel, U. ; et al.
Phys.Rev.C 54 (1996) 1930-1934, 1996.
Inspire Record 429106 DOI 10.17182/hepdata.25768

The analyzing power Ay for π+p→ scattering at 68.3 MeV has been measured at the Paul Scherrer Institut with the magnetic spectrometer LEPS. The measurements cover the angular range 40°≤θlab≤70°. The protons have been polarized in a butanol target, operated in frozen spin mode. The S31 phase shift comes out by about 1° smaller than the Koch-Pietarinen [Nucl. Phys. A 336, 331 (1980)] phase shift analysis, supporting the necessity of an alternative dispersion analysis of πN scattering to determine the σ term and the πN coupling constant. © 1996 The American Physical Society.

1 data table

The two data sets correspond to measurements with two different target compositions (see text).


Polarization observables in pi d (polarized) elastic scattering: Analyzing powers tau (22) and iT (11) in the forward hemisphere

Wessler, M. ; Boschitz, E. ; Brinkmoeller, B. ; et al.
Phys.Rev.C 51 (1995) 2575-2583, 1995.
Inspire Record 405002 DOI 10.17182/hepdata.25896

The vector analyzing power iT11 and the composite observable τ22=T22+T20/ √6 were measured at 10 incident pion energies between 100 and 294 MeV, in an angular range between 50° and 120°. Two different techniques were applied, the detection of the pion with a magnet spectrometer, and the πd coincidence method with scintillation counters. In the case of the first technique also two different target materials were used. Consistency among all data was obtained. The experimental data are compared to Faddeev calculations from one of us (H.G.). The discrepancies between theory and experiment are discussed, and an outlook for further research is given.

14 data tables

Vector analyzing power iT11 and composite observale TAU22 = T22 + T20/sqrt(6). LiDeut target.

Vector analyzing power iT11 and composite observale TAU22 = T22 + T20/sqrt(6). LiDeut target.

Vector analyzing power iT11 and composite observale TAU22 = T22 + T20/sqrt(6). LiDeut target.

More…

Measurement of the analyzing power in anti-p p elastic scattering at 439-MeV/c and 544 MeV/c

Kunne, F. ; Bertini, R. ; Costa, M. ; et al.
Phys.Lett.B 261 (1991) 188-190, 1991.
Inspire Record 314564 DOI 10.17182/hepdata.29399

The angular distributions of the analyzing power A y and of the differential cross section d σ/ d Ω in p p elastic scattering have been measured at 439 and 544 MeV/c. The results of A y are compared with various theoretical models.

4 data tables

Data requested from authors.

Legendre fit polynomials.

Normalized Legendre fit polynomials.

More…

Polarized target asymmetry in pion proton bremsstrahlung at 298-MeV

Bosshard, A. ; Amsler, Claude ; Bistirlich, J.A. ; et al.
Phys.Rev.Lett. 64 (1990) 2619-2622, 1990.
Inspire Record 303404 DOI 10.17182/hepdata.22827

First data are presented for the polarized-target asymmetry in the reaction π+p→π+pγ at an incident pion energy of 298 MeV. The geometry was chosen to maximize the sensitivity to the radiation of the magnetic dipole moment μΔ of the Δ++(1232 MeV). A fit of the asymmetry in the cross section d5σ/dΩπ dΩγ dk as a function of the photon energy k to predictions from a recent isobar-model calculation with μΔ as the only free parameter yields μΔ=1.64(±0.19expΔ,±0.14 theor)μp. Though this value agrees with bag-model corrections to the SU(6) prediction μΔ=2μp, further clarifications on the model dependence of the result are needed, in particular since the isobar model fails to describe both the cross section and the asymmetry at the highest photon energies.

2 data tables

No description provided.

No description provided.