Collins asymmetries in inclusive charged $KK$ and $K\pi$ pairs produced in $e^+e^-$ annihilation

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 92 (2015) 111101, 2015.
Inspire Record 1377201 DOI 10.17182/hepdata.73750

We present measurements of Collins asymmetries in the inclusive process $e^+e^- \rightarrow h_1 h_2 X$, $h_1h_2=KK,\, K\pi,\, \pi\pi$, at the center-of-mass energy of 10.6 GeV, using a data sample of 468 fb$^{-1}$ collected by the BaBar experiment at the PEP-II $B$ factory at SLAC National Accelerator Center. Considering hadrons in opposite thrust hemispheres of hadronic events, we observe clear azimuthal asymmetries in the ratio of unlike- to like-sign, and unlike- to all charged $h_1 h_2$ pairs, which increase with hadron energies. The $K\pi$ asymmetries are similar to those measured for the $\pi\pi$ pairs, whereas those measured for high-energy $KK$ pairs are, in general, larger.

6 data tables

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{2}/(1+\cos^2\theta_{2})$ is summarized, calculated in the RF0 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for $K\pi$ hadron pairs. In the first column, the $z$ bins and their respective mean values for the hadron ($K$ or $\pi$) in one hemisphere are reported; in the following column, the same variables for the second hadron ($K$ or $\pi$) are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $K\pi$ pair and dividing by the number of $K\pi$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

More…

Antideuteron production in $\Upsilon(nS)$ decays and in $e^+e^- \to q\overline{q}$ at $\sqrt{s} \approx 10.58 \mathrm{\,Ge\kern -0.1em V}$

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 89 (2014) 111102, 2014.
Inspire Record 1286317 DOI 10.17182/hepdata.64605

We present measurements of the inclusive production of antideuterons in $e^+e^-$ annihilation into hadrons at $\approx 10.58 \mathrm{\,Ge\kern -0.1em V}$ center-of-mass energy and in $\Upsilon(1S,2S,3S)$ decays. The results are obtained using data collected by the BABAR detector at the PEP-II electron-positron collider. Assuming a fireball spectral shape for the emitted antideuteron momentum, we find $\mathcal{B}(\Upsilon(1S) \to \bar{d}X) = (2.81 \pm 0.49 \mathrm{(stat)} {}^{+0.20}_{-0.24} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(2S) \to \bar{d}X) = (2.64 \pm 0.11 \mathrm{(stat)} {}^{+0.26}_{-0.21} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(3S) \to \bar{d}X) = (2.33 \pm 0.15 \mathrm{(stat)} {}^{+0.31}_{-0.28} \mathrm{(syst)})/! \times /! 10^{-5}$, and $\sigma (e^+e^- \to \bar{d}X) = (9.63 \pm 0.41 \mathrm{(stat)} {}^{+1.17}_{-1.01} \mathrm{(syst)}) \mbox{\,fb}$.

5 data tables

The rate of antideuteron production from the decay of UPSILON(3S).

The rate of antideuteron production from the decay of UPSILON(2S).

The rate of antideuteron production from the decay of UPSILON(1S).

More…

Production of charged pions, kaons and protons in e+e- annihilations into hadrons at sqrt{s} = 10.54 GeV

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 88 (2013) 032011, 2013.
Inspire Record 1238276 DOI 10.17182/hepdata.62088

Inclusive production cross sections of $\pi^\pm$, $K^\pm$ and $p\bar{p}$ per hadronic $e^+e^-$ annihilation event in $e^+e^-$ are measured at a center-of-mass energy of 10.54 GeV, using a relatively small sample of very high quality data from the BaBar experiment at the PEP-II $B$-factory at the SLAC National Accelerator Laboratory. The drift chamber and Cherenkov detector provide clean samples of identified $\pi^\pm$, $K^\pm$ and $p\bar{p}$ over a wide range of momenta. Since the center-of-mass energy is below the threshold to produce a $B\bar{B}$ pair, with $B$ a bottom-quark meson, these data represent a pure $e^+e^- \rightarrow q\bar{q}$ sample with four quark flavors, and are used to test QCD predictions and hadronization models. Combined with measurements at other energies, in particular at the $Z^0$ resonance, they also provide precise constraints on the scaling properties of the hadronization process over a wide energy range.

4 data tables

Differential cross section for prompt PI+-, K+- and PBAR/P production.

Differential cross section for conventional PI+-, K+- and PBAR/P production.

Integrated cross sections for prompt PI+-, K+- and PBAR/P production. The second (sys) error is the uncertainty due to the model dependence of the extrapolation.

More…

Directed and elliptic flow of charged particles in Cu+Cu collisions at $\sqrt{\bm {s_{NN}}} =$ 22.4 GeV

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 85 (2012) 014901, 2012.
Inspire Record 929522 DOI 10.17182/hepdata.98622

This paper reports results for directed flow $v_{1}$ and elliptic flow $v_{2}$ of charged particles in Cu+Cu collisions at $\sqrt{s_{NN}}=$ 22.4 GeV at the Relativistic Heavy Ion Collider. The measurements are for the 0-60% most central collisions, using charged particles observed in the STAR detector. Our measurements extend to 22.4 GeV Cu+Cu collisions the prior observation that $v_1$ is independent of the system size at 62.4 and 200 GeV, and also extend the scaling of $v_1$ with $\eta/y_{\rm beam}$ to this system. The measured $v_2(p_T)$ in Cu+Cu collisions is similar for $\sqrt{s_{NN}} = 22.4-200$ GeV. We also report a comparison with results from transport model (UrQMD and AMPT) calculations. The model results do not agree quantitatively with the measured $v_1(\eta), v_2(p_T)$ and $v_2(\eta)$.

6 data tables

The event plane resolution measured using the TPC (second order) and using the BBC (first order) are shown as a function of collision centrality for Cu+Cu collisions at $\sqrt{s_{NN}}$ = 22.4 GeV. Errors are statistical only.

Charged hadron $v_{1}${BBC} vs. $\eta$ for 0-60% centrality Cu+Cu collisions at $\sqrt{s_{NN}}$ = 22.4 GeV. The errors shown are statistical. Systematic errors are discussed in Section III.C. Results are compared to $v_{1}$ from 0-40% centrality Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV from the PHOBOS collaboration [10].

Comparison of the measured $v_{1}${BBC} as a function of η in 0-60% Cu+Cu collisions at $\sqrt{s_{NN}}$ = 22.4 GeV with model predictions. The inset shows the central $\eta$ region in more detail. The errors are statistical only.

More…

$\rho^{0}$ Photoproduction in AuAu Collisions at $\sqrt{s_{NN}}$=62.4 GeV with STAR

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 85 (2012) 014910, 2012.
Inspire Record 919778 DOI 10.17182/hepdata.101342

Vector mesons may be photoproduced in relativistic heavy-ion collisions when a virtual photon emitted by one nucleus scatters from the other nucleus, emerging as a vector meson. The STAR Collaboration has previously presented measurements of coherent $\rho^0$ photoproduction at center of mass energies of 130 GeV and 200 GeV in AuAu collisions. Here, we present a measurement of the cross section at 62.4 GeV; we find that the cross section for coherent $\rho^0$ photoproduction with nuclear breakup is $10.5\pm1.5\pm 1.6$ mb at 62.4 GeV. The cross-section ratio between 200 GeV and 62.4 GeV is $2.8\pm0.6$, less than is predicted by most theoretical models. It is, however, proportionally much larger than the previously observed $15\pm 55$% increase between 130 GeV and 200 GeV.

5 data tables

Acceptance corrected invariant mass distributions for the coherently produced $\rho^0$ candidates collected with trigger A (left) and B (right). The fit function (solid) encompasses the Breit-Wigner (dashed), the mass independent contribution from direct $\pi^+\pi^-$ production (dash-dotted), and the interference term (dotted). The hatched area is the contribution from the combinatorial background. The statistical errors are shown.

Acceptance corrected invariant mass distributions for the coherently produced $\rho^0$ candidates collected with trigger A (left) and B (right). The fit function (solid) encompasses the Breit-Wigner (dashed), the mass independent contribution from direct $\pi^+\pi^-$ production (dash-dotted), and the interference term (dotted). The hatched area is the contribution from the combinatorial background. The statistical errors are shown.

Transverse momentum distribution of the $\rho^0$ candidates (open distribution) overlaid by the combinatorial background estimated with like-sign pairs (not corrected to the acceptance and reconstruction efficiency) and scaled to match in the high transverse momentum region, $p_T$ ≥ 250 MeV/$c$ (hatched distribution). The plot is based on the dataset collected with trigger B.

More…

Version 2
Strange and Multi-strange Particle Production in Au+Au Collisions at $\sqrt{s_{NN}}$ = 62.4 GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.C 83 (2011) 024901, 2011.
Inspire Record 871561 DOI 10.17182/hepdata.96847

We present results on strange and multi-strange particle production in Au+Au collisions at $\sqrt{s_{NN}}=62.4$ GeV as measured with the STAR detector at RHIC. Mid-rapidity transverse momentum spectra and integrated yields of $K^{0}_{S}$, $\Lambda$, $\Xi$, $\Omega$ and their anti-particles are presented for different centrality classes. The particle yields and ratios follow a smooth energy dependence. Chemical freeze-out parameters, temperature, baryon chemical potential and strangeness saturation factor obtained from the particle yields are presented. Intermediate transverse momentum ($p_T$) phenomena are discussed based on the ratio of the measured baryon-to-meson spectra and nuclear modification factor. The centrality dependence of various measurements presented show a similar behavior as seen in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

58 data tables

Correction factors (acceptance × efficiency) for the most central events ( 0−5% for KS0, Λ and Ξ; 0−20% for Ω) at mid-rapidity (|y| < 1) as a function of pT for the different particle species as obtained via embedding. The branching ratio of the measured decay channel is not factored into this plot.

Correction factors (acceptance × efficiency) for the most central events ( 0−5% for KS0, Λ and Ξ; 0−20% for Ω) at mid-rapidity (|y| < 1) as a function of pT for the different particle species as obtained via embedding. The branching ratio of the measured decay channel is not factored into this plot.

Efficiency corrected pT spectra for the different centrality bins and for the various particles. Note that 7 centrality bins have been used for the KS0 and the Λ while only 6 and 3 have been used for the Ξ and Ω, respectively. Errors are statistical only. The Λ spectra are corrected for the feed-down of the Ξ decay.

More…

Scaling properties at freeze-out in relativistic heavy ion collisions

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.C 83 (2011) 034910, 2011.
Inspire Record 865572 DOI 10.17182/hepdata.104504

Identified charged pion, kaon, and proton spectra are used to explore the system size dependence of bulk freeze-out properties in Cu+Cu collisions at $\sqrt{s_{NN}}$=200 and 62.4 GeV. The data are studied with hydrodynamically-motivated Blast-wave and statistical model frameworks in order to characterize the freeze-out properties of the system. The dependence of freeze-out parameters on beam energy and collision centrality is discussed. Using the existing results from Au+Au and $pp$ collisions, the dependence of freeze-out parameters on the system size is also explored. This multi-dimensional systematic study furthers our understanding of the QCD phase diagram revealing the importance of the initial geometrical overlap of the colliding ions. The analysis of Cu+Cu collisions, which expands the system size dependence studies from Au+Au data with detailed measurements in the smaller system, shows that the bulk freeze-out properties of charged particles studied here scale with the total charged particle multiplicity at mid-rapidity, suggesting the relevance of initial state effects.

26 data tables

Negatively charged pion spectra from Cu+Cu collisions 200 GeV as a function of pT for different centralities.

Negatively charged pion spectra from Cu+Cu collisions 62.4 GeV as a function of pT for different centralities.

Negatively charged kaon spectra from Cu+Cu collisions 200 GeV as a function of pT for different centralities.

More…

K*0 production in Cu+Cu and Au+Au collisions at \sqrt{s_NN} = 62.4 GeV and 200 GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.C 84 (2011) 034909, 2011.
Inspire Record 857694 DOI 10.17182/hepdata.102405

We report on K*0 production at mid-rapidity in Au+Au and Cu+Cu collisions at \sqrt{s_{NN}} = 62.4 and 200 GeV collected by the Solenoid Tracker at RHIC (STAR) detector. The K*0 is reconstructed via the hadronic decays K*0 \to K+ pi- and \bar{K*0} \to K-pi+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c to 5 GeV/c. The center of mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum, <pT>, are presented. The measured N(K*0)/N(K) and N(\phi)/N(K*0) ratios favor the dominance of re-scattering of decay daughters of K*0 over the hadronic regeneration for the K*0 production. In the intermediate pT region (2.0 < pT < 4.0 GeV/c), the elliptic flow parameter, v2, and the nuclear modification factor, RCP, agree with the expectations from the quark coalescence model of particle production.

64 data tables

The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ =200 GeV after mixed-event background subtraction.

The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ =62.4 GeV after mixed-event background subtraction.

The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ =200 GeV after mixed-event background subtraction.

More…

Higher Moments of Net-proton Multiplicity Distributions at RHIC

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.Lett. 105 (2010) 022302, 2010.
Inspire Record 853304 DOI 10.17182/hepdata.73344

We report the first measurements of the kurtosis (\kappa), skewness (S) and variance (\sigma^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at \sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (\mu_B) between 200 - 20 MeV. Our measurements of the products \kappa \sigma^2 and S \sigma, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the \sqrt(s_NN) dependence of \kappa \sigma^2. From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for \mu_B below 200 MeV.

40 data tables

$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 0-5 percent central collisions at midrapidity (| y |< 0.5).

$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 30-40 percent central collisions at midrapidity (| y |< 0.5).

$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 70-80 percent central collisions at midrapidity (| y |< 0.5).

More…

Charged and strange hadron elliptic flow in Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 and 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 81 (2010) 044902, 2010.
Inspire Record 843985 DOI 10.17182/hepdata.98575

We present the results of an elliptic flow analysis of Cu+Cu collisions recorded with the STAR detector at 62.4 and 200GeV. Elliptic flow as a function of transverse momentum is reported for different collision centralities for charged hadrons and strangeness containing hadrons $K_{S}^{0}$, $\Lambda$, $\Xi$, $\phi$ in the midrapidity region $|eta|<1.0$. Significant reduction in systematic uncertainty of the measurement due to non-flow effects has been achieved by correlating particles at midrapidity, $|\eta|<1.0$, with those at forward rapidity, $2.5<|\eta|<4.0$. We also present azimuthal correlations in p+p collisions at 200 GeV to help estimating non-flow effects. To study the system-size dependence of elliptic flow, we present a detailed comparison with previously published results from Au+Au collisions at 200 GeV. We observe that $v_{2}$($p_{T}$) of strange hadrons has similar scaling properties as were first observed in Au+Au collisions, i.e.: (i) at low transverse momenta, $p_T<2GeV/c$, $v_{2}$ scales with transverse kinetic energy, $m_{T}-m$, and (ii) at intermediate $p_T$, $2<p_T<4GeV/c$, it scales with the number of constituent quarks, $n_q$. We have found that ideal hydrodynamic calculations fail to reproduce the centrality dependence of $v_{2}$($p_{T}$) for $K_{S}^{0}$ and $\Lambda$. Eccentricity scaled $v_2$ values, $v_{2}/\epsilon$, are larger in more central collisions, suggesting stronger collective flow develops in more central collisions. The comparison with Au+Au collisions which go further in density shows $v_{2}/\epsilon$ depend on the system size, number of participants $N_{part}$. This indicates that the ideal hydrodynamic limit is not reached in Cu+Cu collisions, presumably because the assumption of thermalization is not attained.

26 data tables

Charged hadron azimuthal correlations as a function of pT in 0-60% Cu+Cu and p+p collisions at 200 GeV using TPC and FTPC flow vectors.

Charged hadron azimuthal anisotropy v2 as a function of pT in 0-60% Cu+Cu collisions at 200 GeV using TPC flow vectors, and those with subtracting the azimuthal correlations in p+p collisions.

Charged hadron azimuthal anisotropy v2 as a function of pT in 0-60% Cu+Cu collisions at 200 GeV using FTPC flow vectors, and those with subtracting the azimuthal correlations in p+p collisions.

More…