INVESTIGATION OF JET STRUCTURES IN K- P AND ANTI-P P INTERACTIONS AT INCIDENT MOMENTUM OF 32-GEV/C

The (IN RUSSIAN) SERPUKHOV-BERLIN-VIENNA-MOSCOW collaboration Babintsev, V.V. ; Bumazhnov, V.A. ; Minaenko, A.A. ; et al.
Yad.Fiz. 45 (1987) 102-109, 1987.
Inspire Record 250506 DOI 10.17182/hepdata.17429

None

10 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of $\Lambda$(1520) production in pp collisions at $\sqrt{s}$ = 7 TeV and p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adhya, S.P. ; et al.
Eur.Phys.J.C 80 (2020) 160, 2020.
Inspire Record 1752831 DOI 10.17182/hepdata.115139

The production of the $\Lambda$(1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at $\sqrt{s}$ = 7 TeV and in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel $\Lambda$(1520) $\rightarrow$ pK$^{-}$ and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and p-Pb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons ($\pi$, K, K$_{\rm{S}}^0$, p, $\Lambda$) describes the shape of the $\Lambda$(1520) transverse momentum distribution up to 3.5 GeV/$c$ in p-Pb collisions. In the framework of this model, this observation suggests that the $\Lambda(1520)$ resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of $\Lambda(1520)$ to the yield of the ground state particle $\Lambda$ remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in p-Pb collisions on the $\Lambda$(1520) yield.

12 data tables

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) at midrapidity in inelastic pp collisions at $\sqrt{s}$ $\mathrm{=}$ 7 TeV.

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) in NSD p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ $\mathrm{=}$ 5.02 TeV. The uncertainty 'sys,$p_{\rm T}$-correlated' indicates the systematic uncertainty after removing the contributions of $p_{\rm T}$-uncorrelated uncertainty.

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) in p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ $\mathrm{=}$ 5.02 TeV in multiplicity interval 0--20\%. The uncertainty 'sys,$p_{\rm T}$-correlated' indicates the systematic uncertainty after removing the contributions of $p_{\rm T}$-uncorrelated uncertainty.

More…

Dielectron production at midrapidity at low transverse momentum in peripheral and semi-peripheral Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adler, A. ; et al.
JHEP 06 (2023) 024, 2023.
Inspire Record 2071861 DOI 10.17182/hepdata.134246

The first measurement of the ${\rm e}^{+}{\rm e}^{-}$ pair production at low lepton pair transverse momentum ($p_{\rm T,ee}$) and low invariant mass ($m_{\rm ee}$) in non-central Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at the LHC is presented. The dielectron production is studied with the ALICE detector at midrapidity ($|\eta_{\rm e}| < 0.8$) as a function of invariant mass ($0.4 \leq m_{\rm ee} < 2.7$ GeV/$c^2$) in the 50$-$70% and 70$-$90% centrality classes for $p_{\rm T,ee} < 0.1$ GeV/$c$, and as a function of $p_{\rm T,ee}$ in three $m_{\rm ee}$ intervals in the most peripheral Pb$-$Pb collisions. Below a $p_{\rm T,ee}$ of 0.1 GeV/$c$, a clear excess of ${\rm e}^{+}{\rm e}^{-}$ pairs is found compared to the expectations from known hadronic sources and predictions of thermal radiation from the medium. The $m_{\rm ee}$ excess spectra are reproduced, within uncertainties, by different predictions of the photon$-$photon production of dielectrons, where the photons originate from the extremely strong electromagnetic fields generated by the highly Lorentz-contracted Pb nuclei. Lowest-order quantum electrodynamic (QED) calculations, as well as a model that takes into account the impact-parameter dependence of the average transverse momentum of the photons, also provide a good description of the $p_{\rm T,ee}$ spectra. The measured $\sqrt{\langle p_{\rm T,ee}^{2} \rangle}$ of the excess $p_{\rm T,ee}$ spectrum in peripheral Pb$-$Pb collisions is found to be comparable to the values observed previously at RHIC in a similar phase-space region.

10 data tables

Differential $e^+e^-$ yield in 50--70\% Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of $m_{\rm ee}$ for $p_{\rm T,ee} < 0.1$ GeV/$c$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$. The quoted upper limits correspond to a 90% confidence level.

Differential $e^+e^-$ yield in 70--90\% Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of $m_{\rm ee}$ for $p_{\rm T,ee} < 0.1$ GeV/$c$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$.

Differential excess $e^+e^-$ yield in 50--70\% Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of $m_{\rm ee}$ for $p_{\rm T,ee} < 0.1$ GeV/$c$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$. The quoted upper limits correspond to a 90% confidence level.

More…

Underlying-event properties in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adler, A. ; et al.
JHEP 06 (2023) 023, 2023.
Inspire Record 2071174 DOI 10.17182/hepdata.133032

We report about the properties of the underlying event measured with ALICE at the LHC in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The event activity, quantified by charged-particle number and summed-$p_{\rm T}$ densities, is measured as a function of the leading-particle transverse momentum ($p_{\rm T}^{\rm trig}$). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different $p_{\rm T}$ thresholds (0.15, 0.5, and 1 GeV/$c$) at mid-pseudorapidity ($|\eta|<0.8$). The event activity in the transverse region, which is the most sensitive to the underlying event, exhibits similar behaviour in both pp and p$-$Pb collisions, namely, a steep increase with $p_{\rm T}^{\rm trig}$ for low $p_{\rm T}^{\rm trig}$, followed by a saturation at $p_{\rm T}^{\rm trig} \approx 5$ GeV/$c$. The results from pp collisions are compared with existing measurements at other centre-of-mass energies. The quantities in the toward and away regions are also analyzed after the subtraction of the contribution measured in the transverse region. The remaining jet-like particle densities are consistent in pp and p$-$Pb collisions for $p_{\rm T}^{\rm trig}>10$ GeV/$c$, whereas for lower $p_{\rm T}^{\rm trig}$ values the event activity is slightly higher in p$-$Pb than in pp collisions. The measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte Carlo event generators.

10 data tables

Fig. 4: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

Fig. 5: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

Fig. 6a: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Away and Toward regions after the subtraction of Number density $N_{\rm ch}$ and $\Sigma p_{\rm T}$ distributions in the transverse region for pp collisions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

More…

Direct observation of the dead-cone effect in QCD

The ALICE collaboration Acharya, S. ; Acharya, S. ; Adamova, D. ; et al.
Nature 605 (2022) 440-446, 2022.
Inspire Record 1867966 DOI 10.17182/hepdata.130725

In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD). These partons subsequently emit further partons in a process that can be described as a parton shower which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass $m_{\rm{Q}}$ and energy $E$, within a cone of angular size $m_{\rm{Q}}$/$E$ around the emitter. Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.

1 data table

The $R(\theta)$ variable for charm/inclusive emissions in three bins of $E_{Rad}$: 5-10, 10-20 and 20-35 GeV.


Symmetry plane correlations in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adler, A. ; et al.
Eur.Phys.J.C 83 (2023) 576, 2023.
Inspire Record 2628969 DOI 10.17182/hepdata.141027

A newly developed observable for correlations between symmetry planes, which characterize the direction of the anisotropic emission of produced particles, is measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV with ALICE. This so-called Gaussian Estimator allows for the first time the study of these quantities without the influence of correlations between different flow amplitudes. The centrality dependence of various correlations between two, three and four symmetry planes is presented. The ordering of magnitude between these symmetry plane correlations is discussed and the results of the Gaussian Estimator are compared with measurements of previously used estimators. The results utilizing the new estimator lead to significantly smaller correlations than reported by studies using the Scalar Product method. Furthermore, the obtained symmetry plane correlations are compared to state-of-the-art hydrodynamic model calculations for the evolution of heavy-ion collisions. While the model predictions provide a qualitative description of the data, quantitative agreement is not always observed, particularly for correlators with significant non-linear response of the medium to initial state anisotropies of the collision system. As these results provide unique and independent information, their usage in future Bayesian analysis can further constrain our knowledge on the properties of the QCD matter produced in ultrarelativistic heavy-ion collisions.

9 data tables

Centrality dependence of $\langle \cos[4(\Psi_{4}-\Psi_{2})]\rangle_{\mathrm{GE}}$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.

Centrality dependence of $\langle \cos[6(\Psi_{6}-\Psi_{3})]\rangle_{\mathrm{GE}}$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.

Centrality dependence of $\langle \cos[6(\Psi_{2}-\Psi_{3})]\rangle_{\mathrm{GE}}$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.

More…

Charged-particle multiplicity distributions over a wide pseudorapidity range in proton-proton collisions at $\mathbf{\sqrt{s}=}$ 0.9, 7 and 8 TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adolfsson, J. ; et al.
Eur.Phys.J.C 77 (2017) 852, 2017.
Inspire Record 1614477 DOI 10.17182/hepdata.78802

We present the charged-particle multiplicity distributions over a wide pseudorapidity range ($-3.4<\eta<5.0$) for pp collisions at $\sqrt{s}=$ 0.9, 7, and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach. The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators, as well as IP-Glasma calculations.

90 data tables

Multiplicity distribution in the pseudorapidity region -2.0 to 2.0 for NSD collisions at a centre-of-mass energy of 900 GeV.

Multiplicity distribution in the pseudorapidity region -2.4 to 2.4 for NSD collisions at a centre-of-mass energy of 900 GeV.

Multiplicity distribution in the pseudorapidity region -3.0 to 3.0 for NSD collisions at a centre-of-mass energy of 900 GeV.

More…

Determination of $\alpha^- s$ From a Measurement of the Direct Photon Spectrum in $\Upsilon$ (1s) Decays

The ARGUS collaboration Albrecht, H. ; Andam, A.A. ; Binder, U. ; et al.
Phys.Lett.B 199 (1987) 291-296, 1987.
Inspire Record 248655 DOI 10.17182/hepdata.30061

Using the ARGUS detector at the DORIS II e + e − storage ring we have measured direct photons from the decay ???(1 S )→ γgg . The ratio R γ = Γ (???(1S)→ γgg )/ Γ (???(1S)→ ggg )=(3.00±0.13±0.18)% has been determined, from which we deduce values of the strong coupling constant α s =0.225±0.011±0.019 and the QCD scale parameter Λ MS =115±17±28 MeV defined in the modified minimal-subtraction scheme. The shape of the measured spectrum clearly rules out the predictions of the lowest order QCD calculations.

1 data table

No description provided.


First Observation of $\gamma \gamma \to \omega \omega$

The ARGUS collaboration Albrecht, H. ; Andam, A.A. ; Binder, U. ; et al.
Phys.Lett.B 198 (1987) 577-582, 1987.
Inspire Record 247566 DOI 10.17182/hepdata.30070

The reaction γγ → 2 π + 2 π − 2 π 0 has been studied using the ARGUS detector at the e + e − storage ring DORIS II at DESY. Production of ω mesons is observed and, in particular, the reaction γγ → ωω is seen for the first time. The cross section for γγ → ωω has an enhancement at ∼ 1.9 GeV/ c 2 of about 10 nb. The cross sections for γγ → 2 π + 2 π − 2 π 0 and γγ → ωπ + π − π 0 are also given.

3 data tables

Topological cross section. 14 pct systematic uncertainty not included.

Cross section for (omega omega) production. Additional 25 pct systematic error not included.

Cross section for (omega pi+ pi- pi0) where (omega omega) events have been removed. Additional 15 pct systematic error not included.


First Observation of $\gamma \gamma \to K^*0 \bar{K}^*$0

The ARGUS collaboration Albrecht, H. ; Andam, A.A. ; Binder, U. ; et al.
Phys.Lett.B 198 (1987) 255-260, 1987.
Inspire Record 248680 DOI 10.17182/hepdata.30080

The final state K + K − π + π − has been studied in γγ interactions using the ARGUS detector at the e + e − storage ring DORIS II at DESY. Production of the vector meson pair K ∗0 (892) K ∗0 (892) is observed for the first time. The cross section for K + K − π + π − , K ∗0 K − π + +c.c. and K ∗0 K ∗0 are all found to be of the order of a few nb. In the W γγ range accessible, a mean upper limit of 0.5 nb at 95% CL is derived for φϱ 0 production.

6 data tables

TOPOLOGICAL CROSS SECTION.

(K*0 K*BAR0) cross section.

(K*0 K- PI+ + CC) CROSS SECTION WITH (K*0 K*BAR0) REMOVED.

More…