Dielectron production at midrapidity at low transverse momentum in peripheral and semi-peripheral Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adler, A. ; et al.
JHEP 06 (2023) 024, 2023.
Inspire Record 2071861 DOI 10.17182/hepdata.134246

The first measurement of the ${\rm e}^{+}{\rm e}^{-}$ pair production at low lepton pair transverse momentum ($p_{\rm T,ee}$) and low invariant mass ($m_{\rm ee}$) in non-central Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at the LHC is presented. The dielectron production is studied with the ALICE detector at midrapidity ($|\eta_{\rm e}| < 0.8$) as a function of invariant mass ($0.4 \leq m_{\rm ee} < 2.7$ GeV/$c^2$) in the 50$-$70% and 70$-$90% centrality classes for $p_{\rm T,ee} < 0.1$ GeV/$c$, and as a function of $p_{\rm T,ee}$ in three $m_{\rm ee}$ intervals in the most peripheral Pb$-$Pb collisions. Below a $p_{\rm T,ee}$ of 0.1 GeV/$c$, a clear excess of ${\rm e}^{+}{\rm e}^{-}$ pairs is found compared to the expectations from known hadronic sources and predictions of thermal radiation from the medium. The $m_{\rm ee}$ excess spectra are reproduced, within uncertainties, by different predictions of the photon$-$photon production of dielectrons, where the photons originate from the extremely strong electromagnetic fields generated by the highly Lorentz-contracted Pb nuclei. Lowest-order quantum electrodynamic (QED) calculations, as well as a model that takes into account the impact-parameter dependence of the average transverse momentum of the photons, also provide a good description of the $p_{\rm T,ee}$ spectra. The measured $\sqrt{\langle p_{\rm T,ee}^{2} \rangle}$ of the excess $p_{\rm T,ee}$ spectrum in peripheral Pb$-$Pb collisions is found to be comparable to the values observed previously at RHIC in a similar phase-space region.

10 data tables

Differential $e^+e^-$ yield in 50--70\% Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of $m_{\rm ee}$ for $p_{\rm T,ee} < 0.1$ GeV/$c$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$. The quoted upper limits correspond to a 90% confidence level.

Differential $e^+e^-$ yield in 70--90\% Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of $m_{\rm ee}$ for $p_{\rm T,ee} < 0.1$ GeV/$c$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$.

Differential excess $e^+e^-$ yield in 50--70\% Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of $m_{\rm ee}$ for $p_{\rm T,ee} < 0.1$ GeV/$c$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$. The quoted upper limits correspond to a 90% confidence level.

More…

First measurement of antideuteron number fluctuations at energies available at the Large Hadron Collider

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adler, A. ; et al.
Phys.Rev.Lett. 131 (2023) 041901, 2023.
Inspire Record 2070391 DOI 10.17182/hepdata.136310

The first measurement of event-by-event antideuteron number fluctuations in high energy heavy-ion collisions is presented. The measurements are carried out at midrapidity ($|\eta| < 0.8$) as a function of collision centrality in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV using the ALICE detector. A significant negative correlation between the produced antiprotons and antideuterons is observed in all collision centralities. The results are compared with coalescence calculations, which fail to describe the measurement, in particular if a correlated production of protons and neutrons is assumed. Thermal-statistical model calculations describe the data within uncertainties only for correlation volumes that are different with respect to those describing proton yields and a similar measurement of net-proton number fluctuations.

5 data tables

Second order to first order cumulant ratio of the $\overline{d}$ multiplicity distribution as a function of collision centrality in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV.

Pearson correlation between the measured $\overline{p}$ and $\overline{d}$ as a function of collision centrality in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV.

Dependence of $\overline{p}$-$\overline{d}$ correlation on pseudorapidity acceptance of $\overline{p}$ and $\overline{d}$ selection in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV. Results are for 0.0--10.0$\%$ collision centrality.

More…

Underlying-event properties in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adler, A. ; et al.
JHEP 06 (2023) 023, 2023.
Inspire Record 2071174 DOI 10.17182/hepdata.133032

We report about the properties of the underlying event measured with ALICE at the LHC in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The event activity, quantified by charged-particle number and summed-$p_{\rm T}$ densities, is measured as a function of the leading-particle transverse momentum ($p_{\rm T}^{\rm trig}$). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different $p_{\rm T}$ thresholds (0.15, 0.5, and 1 GeV/$c$) at mid-pseudorapidity ($|\eta|<0.8$). The event activity in the transverse region, which is the most sensitive to the underlying event, exhibits similar behaviour in both pp and p$-$Pb collisions, namely, a steep increase with $p_{\rm T}^{\rm trig}$ for low $p_{\rm T}^{\rm trig}$, followed by a saturation at $p_{\rm T}^{\rm trig} \approx 5$ GeV/$c$. The results from pp collisions are compared with existing measurements at other centre-of-mass energies. The quantities in the toward and away regions are also analyzed after the subtraction of the contribution measured in the transverse region. The remaining jet-like particle densities are consistent in pp and p$-$Pb collisions for $p_{\rm T}^{\rm trig}>10$ GeV/$c$, whereas for lower $p_{\rm T}^{\rm trig}$ values the event activity is slightly higher in p$-$Pb than in pp collisions. The measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte Carlo event generators.

10 data tables

Fig. 4: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

Fig. 5: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

Fig. 6a: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Away and Toward regions after the subtraction of Number density $N_{\rm ch}$ and $\Sigma p_{\rm T}$ distributions in the transverse region for pp collisions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

More…

Nonprompt direct-photon production in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
336 authors from 71 institutions, 26 pages, 30 figures, 4 tabels, 2014 data. Physical Review C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.html, 2022.
Inspire Record 2061074 DOI 10.17182/hepdata.129292

The measurement of the direct-photon spectrum from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV is presented by the PHENIX collaboration using the external-photon-conversion technique for 0%--93% central collisions in a transverse-momentum ($p_T$) range of 0.8--10 GeV/$c$. An excess of direct photons, above prompt-photon production from hard-scattering processes, is observed for $p_T<6$ GeV/$c$. Nonprompt direct photons are measured by subtracting the prompt component, which is estimated as $N_{\rm coll}$-scaled direct photons from $p$ $+$ $p$ collisions at 200 GeV, from the direct-photon spectrum. Results are obtained for $0.8<p_T<6.0$ GeV/$c$ and suggest that the spectrum has an increasing inverse slope from ${\approx}0.2$ to 0.4 GeV/$c$ with increasing $p_T$, which indicates a possible sensitivity of the measurement to photons from earlier stages of the evolution of the collision. In addition, like the direct-photon production, the $p_T$-integrated nonprompt direct-photon yields also follow a power-law scaling behavior as a function of collision-system size. The exponent, $\alpha$, for the nonprompt component is found to be consistent with 1.1 with no apparent $p_T$ dependence.

9 data tables

Direct photon $R_{\gamma}$, every 20% centrality

Direct photon $R_{\gamma}$, every 10% centrality

Invariant yield of direct photons, every 10% centrality

More…

Low-$p_T$ direct-photon production in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=39$ and 62.4 GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Adare, A. ; et al.
Phys.Rev.C 107 (2023) 024914, 2023.
Inspire Record 2057344 DOI 10.17182/hepdata.133218

The measurement of direct photons from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=39$ and 62.4 GeV in the transverse-momentum range $0.4<p_T<3$ Gev/$c$ is presented by the PHENIX collaboration at the Relativistic Heavy Ion Collider. A significant direct-photon yield is observed in both collision systems. A universal scaling is observed when the direct-photon $p_T$ spectra for different center-of-mass energies and for different centrality selections at $\sqrt{s_{_{NN}}}=62.4$ GeV is scaled with $(dN_{\rm ch}/d\eta)^{\alpha}$ for $\alpha=1.21{\pm}0.04$. This scaling also holds true for direct-photon spectra from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV measured earlier by PHENIX, as well as the spectra from Pb$+$Pb at $\sqrt{s_{_{NN}}}=2760$ GeV published by ALICE. The scaling power $\alpha$ seems to be independent of $p_T$, center of mass energy, and collision centrality. The spectra from different collision energies have a similar shape up to $p_T$ of 2 GeV/$c$. The spectra have a local inverse slope $T_{\rm eff}$ increasing with $p_T$ of $0.174\pm0.018$ GeV/$c$ in the range $0.4<p_T<1.3$ GeV/$c$ and increasing to $0.289\pm0.024$ GeV/$c$ for $0.9<p_T<2.1$ GeV/$c$. The observed similarity of low-$p_T$ direct-photon production from $\sqrt{s_{_{NN}}}= 39$ to 2760 GeV suggests a common source of direct photons for the different collision energies and event centrality selections, and suggests a comparable space-time evolution of direct-photon emission.

12 data tables

$R_{\gamma}$ for minimum bias (0-86%) Au+Au collision at $\sqrt{s_{NN}} = 62.4$ GeV (a) and $39$ GeV (b). For $62.4$ GeV also centrality bins of 0-20% (c) and 20-40% (d) are shown. Data points are shown with statistical (bar) and systematic uncertainties (box)

$R_{\gamma}$ for minimum bias (0-86%) Au+Au collision at $\sqrt{s_{NN}} = 62.4$ GeV (a) and $39$ GeV (b). For $62.4$ GeV also centrality bins of 0-20% (c) and 20-40% (d) are shown. Data points are shown with statistical (bar) and systematic uncertainties (box)

Direct photon spectra for minimum bias (0-86%) Au+Au collision at $\sqrt{s_{NN}} = 62.4$ GeV (a) and $39$ GeV (b). For $62.4$ GeV also centrality bins of 0-20% (c) and 20-40% (d) are shown. Data points are shown with statistical and systematic uncertainties, unless the central value is negative (arrows) or is consistent with zero within the statistical uncertainties (arrows with data point). In these cases upper limit with CL = 95$%$ are given.

More…

Measurements of second-harmonic Fourier coefficients from azimuthal anisotropies in $p+p, p$+Au $d$+Au, and $^3$He + Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Adare, A. ; et al.
Phys.Rev.C 107 (2023) 024907, 2023.
Inspire Record 2054927 DOI 10.17182/hepdata.136560

Recently, the PHENIX Collaboration has published second- and third-harmonic Fourier coefficients $v_2$ and $v_3$ for midrapidity ($|\eta|<0.35$) charged hadrons in 0%--5% central $p$$+$Au, $d$ $+$Au, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV utilizing three sets of two-particle correlations for two detector combinations with different pseudorapidity acceptance [Phys. Rev. C {\bf 105}, 024901 (2022)]. This paper extends these measurements of $v_2$ to all centralities in $p$ $+$Au, $d$ $+$Au, and $^3$He$+$Au collisions, as well as $p$$+$$p$ collisions, as a function of transverse momentum ($p_T$) and event multiplicity. The kinematic dependence of $v_2$ is quantified as the ratio $R$ of $v_2$ between the two detector combinations as a function of event multiplicity for $0.5$ $<$ $p_T$ $<$ $1$ and $2$ $<$ $p_T$ $<$ $2.5$ GeV/$c$. A multiphase-transport (AMPT) model can reproduce the observed $v_2$ in most-central to midcentral $d$$+$Au and $^3$He$+$Au collisions. However, the AMPT model systematically overestimates the measurements in $p$ $+$ $p$, $p$ $+$Au, and peripheral $d$$+$Au and $^3$He$+$Au collisions, indicating a higher nonflow contribution in AMPT than in the experimental data. The AMPT model fails to describe the observed $R$ for $0.5$ $<$ $p_T$$<$ $1$ GeV/$c$, but there is qualitative agreement with the measurements for $2$ $<$ $p_T$ $<$ $2.5$ GeV/$c$.

18 data tables

Azimuthal anisotropy $v_2\{BB\}$ as a function of transverse momentum $p_T$ in $p$+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.

Azimuthal anisotropy $v_2\{BF\}$ as a function of transverse momentum $p_T$ in $p$+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.

Azimuthal anisotropy $v_2\{BB\}$ as a function of transverse momentum $p_T$ in $d$+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.

More…

Study of $\phi$-meson production in $p+$Al, $p+$Au, $d+$Au, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 106 (2022) 014908, 2022.
Inspire Record 2050486 DOI 10.17182/hepdata.130267

Small nuclear collisions are mainly sensitive to cold-nuclear-matter effects; however, the collective behavior observed in these collisions shows a hint of hot-nuclear-matter effects. The identified-particle spectra, especially the $\phi$ mesons which contain strange and antistrange quarks and have a relatively small hadronic-interaction cross section, are a good tool to study these effects. The PHENIX experiment has measured $\phi$ mesons in a specific set of small collision systems $p$$+$Al, $p$$+$Au, and $^3$He$+$Au, as well as $d$$+$Au [Phys. Rev. C {\bf 83}, 024909 (2011)], at $\sqrt{s_{_{NN}}}=200$ GeV. The transverse-momentum spectra and nuclear-modification factors are presented and compared to theoretical-model predictions. The comparisons with different calculations suggest that quark-gluon plasma may be formed in these small collision systems at $\sqrt{s_{_{NN}}}=200$ GeV. However, the volume and the lifetime of the produced medium may be insufficient for observing strangeness-enhancement and jet-quenching effects. Comparison with calculations suggests that the main production mechanisms of $\phi$ mesons at midrapidity may be different in $p$$+$Al versus $p/d/$$^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. While thermal quark recombination seems to dominate in $p/d/$$^3$He$+$Au collisions, fragmentation seems to be the main production mechanism in $p$$+$Al collisions.

2 data tables

Invariant transverse momentum spectra measured for $\phi$ mesons in (a) $p$+Al, (b) $p$+Au, and (c) $^{3}$He+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV at midrapidity.

Comparison of $\phi$-meson nuclear-modification factors in $p$+Al, $p$+Au, $d$+Au [2], and $^{3}$He+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV at midrapidity. The normalization uncertainty from $p$+$p$ of about $9.7 \%$ is not shown [28].


Measurement of Direct-Photon Cross Section and Double-Helicity Asymmetry at $\sqrt{s}=510$ GeV in $\vec{p}+\vec{p}$ Collisions

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.Lett. 130 (2023) 251901, 2023.
Inspire Record 2033856 DOI 10.17182/hepdata.129088

We present measurements of the cross section and double-helicity asymmetry $A_{LL}$ of direct-photon production in $\vec{p}+\vec{p}$ collisions at $\sqrt{s}=510$ GeV. The measurements have been performed at midrapidity ($|\eta|<0.25$) with the PHENIX detector at the Relativistic Heavy Ion Collider. At relativistic energies, direct photons are dominantly produced from the initial quark-gluon hard scattering and do not interact via the strong force at leading order. Therefore, at $\sqrt{s}=510$ GeV, where leading-order-effects dominate, these measurements provide clean and direct access to the gluon helicity in the polarized proton in the gluon-momentum-fraction range $0.02<x<0.08$, with direct sensitivity to the sign of the gluon contribution.

2 data tables

Cross sections for inclusive and isolated direct photons as a function of $p_T$. Not shown are 10% absolute luminosity uncertainties.

Double helicity asymmetry $A_{LL}$ $vs$ $p_{T}$ for isolated direct-photon production in polarized $\vec{p}+\vec{p}$ collisions at $\sqrt{s}=510$ GeV at midrapidity. Not shown are $3.9 \times 10^{-4}$ shift uncertainty from relative luminosity and 6.6% scale uncertainty from polarization.


Measurement of $\psi(2S)$ nuclear modification at backward and forward rapidity in $p$ $+$ $p$, $p$ $+$ Al, and $p$ $+$ Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.C 105 (2022) 064912, 2022.
Inspire Record 2029951 DOI 10.17182/hepdata.130200

Suppression of the $J/\psi$ nuclear-modification factor has been seen as a trademark signature of final-state effects in large collision systems for decades. In small systems, the nuclear modification was attributed to cold-nuclear-matter effects until the observation of strong differential suppression of the $\psi(2S)$ state in $p/d$ $+$ $A$ collisions suggested the presence of final-state effects. Results of $J/\psi$ and $\psi(2S)$ measurements in the dimuon decay channel are presented here for $p$ $+$ $p$, $p$ $+$Al, and $p$ $+$Au collision systems at $\sqrt{s_{_{NN}}}=200$ GeV. The results are predominantly shown in the form of the nuclear-modification factor, $R_{pA}$, the ratio of the $\psi(2S)$ invariant yield per nucleon-nucleon collision in collisions of proton on target nucleus to that in $p$ $+$ $p$ collisions. Measurements of the $J/\psi$ and $\psi(2S)$ nuclear-modification factor are compared with shadowing and transport-model predictions, as well as to complementary measurements at Large-Hadron-Collider energies.

12 data tables

PSI(2S)-->MU+MU- invariant yields in p+p, p+Al, and p+Au collisions as a function of rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/PSI(1S)-->MU+MU- invariant yields in p+p, p+Al, and p+Au collisions as a function of rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

PSI(2S)-->MU+MU- nuclear modification in p+Al collisions as a function of rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

Transverse-single-spin asymmetries of charged pions at midrapidity in transversely polarized $p{+}p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.D 105 (2022) 032003, 2022.
Inspire Record 1988071 DOI 10.17182/hepdata.129284

In 2015, the PHENIX collaboration has measured single-spin asymmetries for charged pions in transversely polarized proton-proton collisions at the center of mass energy of $\sqrt{s}=200$ GeV. The pions were detected at central rapidities of $|\eta|<0.35$. The single-spin asymmetries are consistent with zero for each charge individually, as well as consistent with the previously published neutral-pion asymmetries in the same rapidity range. However, they show a slight indication of charge-dependent differences which may suggest a flavor dependence in the underlying mechanisms that create these asymmetries.

1 data table

Measured charged pion single spin asymmetries in p+p collisions as a function of pT