$K^0(s$) $K \pi$ Production in Tagged and Untagged $\gamma \gamma$ Interactions

The CELLO collaboration Behrend, H.J. ; Criegee, L. ; Dainton, J.B. ; et al.
Z.Phys.C 42 (1989) 367, 1989.
Inspire Record 266414 DOI 10.17182/hepdata.15529

We have searched for resonance production in the reaction γγ→Ks0Kπ. No signal was found for theηc and an upper limit for the radiative with\(\Gamma _{\gamma \gamma }^{\eta _c } \) keV (95% c.l.) is obtained. For the glueball candidate η(1440) (previouslyi) the upper limit\(\Gamma _{\gamma \gamma }^{\eta (1440)} B(\eta (1440) \to K\bar K\pi )< 1.2keV(95\% c.l.)\) is derived. In the tagged data sample resonance formation of a spin 1 state at 1420 MeV is observed, which is absent in the untagged data. The mass and width of this state are consistent with those of thef1(1420); an analysis of decay angular distributions favours positive parity.

1 data table

Data read from graph.. Additional overall systematic error decreasing from 25% in the lowest mass bins to 15% for M > 2.0 GeV.


$\tau$ Production and Decay With the Cello Detector at {PETRA}

The CELLO collaboration Behrend, H.J. ; Criegee, L. ; Dainton, J.B. ; et al.
Phys.Lett.B 222 (1989) 163-172, 1989.
Inspire Record 276859 DOI 10.17182/hepdata.29824

The reaction e + e − → τ + τ − has been studied at centre of mass energies between 14.0 and 46.8 GeV with the CELLO detector at the PETRA e + e − collider. We present results for the cross section σ τ and the charge asymmetry A τ . The results are in good agreement with the standard model. We have also measured the topological decay rates BR 1 , BR 3 and BR 5 for the inclusive decay of the τ lepton into one, three and five charge particles. The results confirm and improve earlier CELLO measurements at other energies. We find for the combined values at all energies BR 1 = (84.9 ± 0.4 ± 0.3)%, BR 3 = (15.0 ± 0.4 ± 0.3)% and BR 5 = (0.16 ± 0.13 ± 0.04)%.

3 data tables

No description provided.

No description provided.

Corrected for radiative effects and background contributions.


$p (^{3}$He, T) Charge Exchange Reaction at 4.4-{GeV}/$c$ - 18.3-{GeV}/$c$ With $\Delta$ Isobar Production

Ableev, V.G. ; Vorobev, G.G. ; Dimitrov, Kh. ; et al.
Sov.J.Nucl.Phys. 46 (1987) 300, 1987.
Inspire Record 235268 DOI 10.17182/hepdata.2438

None

4 data tables

No description provided.

No description provided.

No description provided.

More…

A Comparison of b and (u d s) quark jets to gluon jets

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 69 (1996) 543-560, 1996.
Inspire Record 399990 DOI 10.17182/hepdata.48094

Symmetric three-jet events are selected from hadronic Z0 decays such that the two lower energy jets are each produced at an angle of about 150° with respect to the highest energy jet. In some cases, a displaced secondary vertex is reconstructed in one of the two lower energy jets, which permits the other lower energy jet to be identified as a gluon jet through anti-tagging. In other cases, the highest energy jet is tagged as a b jet or as a light quark (uds) jet using secondary vertex or track impact parameter and momentum information. Comparing the two lower energy jets of the events with a tag in the highest energy jet to the anti-tagged gluon jets yields a direct comparison of b, uds and gluon jets, which are produced with the same energy of about 24 GeV and under the same conditions. We observe b jets and gluon jets to have similar properties as measured by the angular distribution of particle energy around the jet directions and by the fragmentation functions. In contrast, gluon jets are found to be significantly broader and to have a markedly softer fragmentation function than uds jets. For the k⊥ jet finder with ycut=0.02, we find $${«ngle n^{⤪ ch.}»ngle {⤪ gluon}⩈er «ngle n^{⤪ ch.}»ngle {⤪ b} {⤪ quark}}=1.089pm 0.024 ({⤪ stat.})pm0.024 ({⤪ syst.})$$ $${«ngle n^{⤪ ch.}»ngle {⤪ gluon}⩈er «ngle n^{⤪ ch.}»ngle {⤪ uds} {⤪ quark}}=1.390pm 0.038 ({⤪ stat.})pm0.032 ({⤪ syst.})$$ as the ratios of the mean charged particle multiplicity in the gluon jets compared to the b and uds jets. Results are also reported using the cone jet finder.

2 data tables

Two method of jet's reconstruction: 'kt' and 'cone' (see text).

Two method of jet's reconstruction: 'kt' and 'cone' (see text). QUARK meansUQ or DQ or SQ.


A Determination of alpha-s (M (Z0)) at LEP using resummed QCD calculations

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 59 (1993) 1-20, 1993.
Inspire Record 354188 DOI 10.17182/hepdata.14427

The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio

7 data tables

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

More…

A Direct observation of quark - gluon jet differences at LEP

The OPAL collaboration Alexander, G. ; Allison, J. ; Allport, P.P. ; et al.
Phys.Lett.B 265 (1991) 462-474, 1991.
Inspire Record 316872 DOI 10.17182/hepdata.48454

Quark and gluon jets in e + e − three-jet events at LEP are identified using lepton tagging of quark jets, through observation of semi-leptonic charm and bottom quark decays. Events with a symmetry under transposition of the energies and directions of a quark and gluon jet are selected: these quark and gluon jets have essentially the same energy and event environment and as a consequence their properties can be compared directly. The energy of the jets which are studied is about 24.5 GeV. In the cores of the jets, gluon jets are found to yield a softer particle energy spectrum than quark jets. Gluon jets are observed to be broader than quark jets, as seen from the shape of their particle momentum spectra both in and out of the three-jet event plane. The greater width of gluon jets relative to quark jets is also visible from the shapes of their multiplicity distributions. Little difference is observed, however, between the mean value of particle multiplicity for the two jet types.

1 data table

QUARK means QUARK or QUARKBAR.


A Global determination of alpha-s (M(z0)) at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 55 (1992) 1-24, 1992.
Inspire Record 333079 DOI 10.17182/hepdata.14606

The value of the strong coupling constant,$$\alpha _s (M_{Z^0 } )$$, is determined from a study of 15 d

16 data tables

Differential jet mass distribution for the heavier jet using method T. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.

Differential jet mass distribution for the jet mass difference using methodT. The data are corrected for the finite acceptance and resolution of the detec tor and for initial state photon radiation.

Differential jet mass distribution for the heavier jet using method M. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.

More…

A Measurement and QCD Analysis of the Proton Structure Function $F_2(x,Q~2)$ at HERA

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Nucl.Phys.B 470 (1996) 3-40, 1996.
Inspire Record 416819 DOI 10.17182/hepdata.44781

A new measurement of the proton structure function $F_2(x,Q~2)$ is reported for momentum transfers squared $Q~2$ between 1.5GeV$~2$ and 5000GeV$~2$ and for Bjorken $x$ between $3\cdot 10~{-5}$ and $0.32$ using data collected by the HERA experiment H1 in 1994. The data represent an increase in statistics by a factor of ten with respect to the analysis of the 1993 data. Substantial extension of the kinematic range towards low $Q~2$ and $x$ has been achieved using dedicated data samples and events with initial state photon radiation. The structure function is found to increase significantly with decreasing $x$, even in the lowest accessible $Q~2$ region. The data are well described by a Next to Leading Order QCD fit and the gluon density is extracted.

26 data tables

Data from shifted vertex sample.

Data from shifted vertex sample.

Data from shifted vertex sample.

More…

A Measurement of K*+- (892) production in hadronic Z0 decays

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 305 (1993) 407-414, 1993.
Inspire Record 342766 DOI 10.17182/hepdata.28930

Measurements are presented of the inclusive cross section for K ∗ (892) ± production in hadronic decays of the Z 0 using a sample of about half a million events recorded with the OPAL experiment at LEP. Charged K ∗ mesons are reconstructed in the decay channel K 0 S π ± . A mean rate of 0.72±0.02±0.08 K ∗ mesons per hadronic event is found. Comparison of the results with predictions of the JETSET and HERWIG models shows that JETSET overestimates the K ∗± production cross section while HERWIG is consistent with the data.

2 data tables

No description provided.

No description provided.


A Measurement of charged particle multiplicity in Z0 --> c anti-c and Z0 --> b anti-b events

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 352 (1995) 176-186, 1995.
Inspire Record 393953 DOI 10.17182/hepdata.48168

We have used data from the OPAL detector at LEP to reconstruct D ∗ mesons and secondary vertices in jets. We have studied the hemispheres of the events opposite these jets and obtain values of the hemisphere charged particle multiplicity in Z 0 → u u , d d , s s , Z 0 → c c and Z 0 → b b events of n uds = 10.41 ± 0.06 ± 0.09 ± 0.19 ; n c = 10.76 ± 0.20 ± 0.14 ± 0.19 ; n b = 11.81 ± 0.01 ± 0.12 ± 0.21 where the first errors are statistical, the second systmatic and the third a common scale uncertainty. We find the difference in total charged particle multiplicity between c and b quark events and light (u, d, s) quark events to be δ cl = 0.69 ± 0.51 ± 0.35; δ bl = 2.79 ± 0.12 ± 0.27. These results are compared to the predictions of various models and QCD based calculations.

2 data tables

Second systematic error is a common scale uncertainty.

Difference in the TOTAL charged particle multiplicity.