The cross section asymmetry Sigma has been measured for the photoproduction of pi0-mesons off protons, using polarized photons in the energy range Eg = 0.5 - 1.1 GeV. The CM angular coverage is Theta = 85 - 125 deg with energy and angle steps of 25 MeV and 5 deg, respectively. The obtained Sigma data, which cover the second and third resonance regions, are compared with existing experimental data and recent phenomenological analyses. The influence of these measurements on such analyses is also considered.
Axis error includes +- 3/3 contribution (Due to accuracy of the linear polarization calculations).
Axis error includes +- 3/3 contribution (Due to accuracy of the linear polarization calculations).
Axis error includes +- 3/3 contribution (Due to accuracy of the linear polarization calculations).
We report on a study of the ratio of inclusive three-jet to inclusive two-jet production cross sections as a function of total transverse energy in p-pbar collisions at a center-of-mass energy sqrt{s} = 1.8 TeV, using data collected with the D0 detector during the 1992-1993 run of the Fermilab Tevatron Collider. The measurements are used to deduce preferred renormalization scales in perturbative O(alpha_s^3) QCD calculations in modeling soft-jet emission.
First and second errors correspond to uncorrelated (C=UNCORR) and correlated (C=CORR) uncertainties. Uncorrelated uncertainties include statistical and uncorrelated systematic uncertainties added in quadrature.
A partial wave analysis of the centrally produced eta pi0 and eta pi- channels has been performed in pp collisions using an incident beam momentum of 450 GeV/c. Clear a0(980) and a2(1320) signals have been observed in S and D+ waves respectively. The dPT, phi and |t| distributions of these resonances are presented.
The variable ABS(PT(P=3)-PT(P=4)) is used as a glueball-QUARK QUARKBAR filter (see F.E.Close and A.Krik, PL 397B, 333 (1997)). SIG(C=TOT) stands for the cross section for the whole ABS(PT(P=3)-PT(P=4))interval.
The variable ABS(PT(P=3)-PT(P=4)) is used as a glueball-QUARK QUARKBAR filter (see F.E.Close and A.Krik, PL 397B, 333 (1997)).
DO has measured the inclusive production cross section of W and Z bosons in a sample of 13 pb$^{-1}$ of data collected at the Fermilab Tevatron. The cross sections, multiplied by their leptonic branching fractions, for production in pbar-p collisions at sqrt{s}=1.8 TeV are sigma_W*B(W->e nu) = 2.36+-0.02+-0.08+-0.13 nb, sigma_W*B(W->mu nu) = 2.09+-0.06+-0.22+-0.11 nb, sigma_Z*B(Z->e+ e-) = 0.218+-0.008+-0.008+-0.012 nb, and sigma_Z*B(Z->mu+ mu-) = 0.178+-0.022+-0.021+-0.009 nb, where the first uncertainty is statistical and the second systematic; the third reflects the uncertainty in the integrated luminosity. For the combined electron and muon analyses, we find sigma_W*B(W->l mu)/sigma_Z*B(Z->l+ l-) = 10.90+-0.52. Assuming standard model couplings, we use this result to determine the width of the W boson, and obtain Gamma(W) = 2.044+-0.097 GeV.
No description provided.
Combined electron and muon analysis.
The reaction pp -> pf (pi+pi-pi0) ps has been studied at 450 GeV/c in an experiment designed to search for gluonic states. A spin analysis has been performed and the dPT filter applied. The analysis confirms the previous observation that all undisputed qqbar states are suppressed at small dPT. In addition, a clear difference is observed in the production mechanism for the eta and omega.
SIG(C=TOT) denotes the total cross section for each resonance. The variable ABS(PT(P=3)-PT(P=4)) is used as a glueball-QUARK QUARKBAR filter (see F.E.Close and A.Krik, PL 397B, 333 (1997)).
The WA94 experiment uses the production of strange particles and antiparticles to investigate the properties of hot hadronic matter created in heavy-ion interactions. Λ, Λ , Ξ − and Ξ + particle yields and transverse mass spectra are presented for pS interactions. These results are compared with those from SS interactions. Our results are also compared with those from pW and SW interactions of the WA85 experiment.
The fit with formula (1/MT**1.5)*D(SIG)/D(MT) = CONST*EXP(MT/SLOPE).
No description provided.
No description provided.
A fresh analysis is reported of high statistics Crystal Barrel data on p p → 3π 0 , ηηπ 0 , ηπ 0 π 0 and ηη ′ π 0 at rest. This analysis is made fully consistent with CERN-Munich data on π + π − → π + π − up to a mass of 1900 MeV, with GAMS data on π + π − → π 0 π 0 , and with BNL and ANL data on π + π − → K K , which are fitted simultaneously. There is evidence for an I = 0, J PC = 2 ++ resonance with weak (≤ 7%) coupling to ππ, strong coupling to both ϱϱ and ωω and pole position 1534 - i90 MeV. This resonance agrees qualitatively with GAMS and VES data on ππ → ωω, previously interpreted in terms of a resonance at 1590–1640 MeV. New masses and widths for (A) ƒ 0 (1370) and (B) ƒ 0 (1500) , fitted to all eight data sets, are M A = 1300 ± 15 Mev, Γ A = 230 ± 15 MeV, M B = 1500 ± 8 MeV, Γ B = 132 ± 15 MeV. Branching ratios to ππ and ηη are given, and differ significantly from earlier determinations because of a new procedure.
A fraction of the initial P-state annihilation into F2(1270) cannot be ruled out. Therefore, the ratio magnitudes include the contribution due to this channel. MESON0 denotes A2(1630) state, not present in RPP.
Cross-sections are obtained for coherent interactions of π+ and K+-mesons with Al and Au nuclei at 250 GeV/c, leading to three, five and seven charged mesons. The total coherent cross-section is (4.3 ± 0.5)% of the inelastic cross-section for each of the four meson-nucleus interactions. In 85% of the coherent events, the charged meson production is accompanied by neutral mesons. Effective mass distributions are presented for coherently produced particles, including charged mesons and photons, carrying total measured energy of more than 85% of the initial energy. Charged particle and γ spectra are analysed. No charge asymmetry is observed within the coherently produced cluster.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
A study of the particle multiplicity between jets with large rapidity separation has been performed using the D\O\ detector at the Fermilab Tevatron $p\bar{p}$ Collider operating at $\sqrt{s}=1.8$\,TeV. A significant excess of low-multiplicity events is observed above the expectation for color-exchange processes. The measured fractional excess is $1.07 \pm 0.10({\rm stat})~{ + 0.25}_{- 0.13}({\rm syst})\%$, which is consistent with a strongly-interacting color-singlet (colorless) exchange process and cannot be explained by electroweak exchange alone. A lower limit of $0.80\%$ (95\% C.L.) is obtained on the fraction of dijet events with color-singlet exchange, independent of the rapidity gap survival probability.
'Opposite-side' jets with a large pseudorapidity separation. A cone algorithm with radius R = sqrt(d(etarap)**2+d(phi)**2)=0.7 is used for jet funding. Double negative binomial distribution (NBD) is used to parametrize the color-exchange component of the opposite-side multiplicity distribution betweeb jets. A result of extrapolation to the zero multiplicity point. Quoted systematic error is a result of combining in quadrature of the systematic errors described above.