Date

Photon and neutral pion production in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 70 (2004) 044902, 2004.
Inspire Record 642374 DOI 10.17182/hepdata.98925

We report the first inclusive photon measurements about mid-rapidity (|y|<0.5) from Au+Au collisions at sqrt(s_{NN}) = 130 GeV at RHIC. Photon pair conversions were reconstructed from electron and positron tracks measured with the Time Projection Chamber (TPC) of the STAR experiment. With this method, an energy resolution of Delta(E)/E = 2% at 0.5 GeV has been achieved. Reconstructed photons have also been used to measure the transverse momentum (pt) spectra of pi0 mesons about mid-rapidity (|y|<1) via the pi0 -> photon photon decay channel. The fractional contribution of the pi0 -> photon photon decay to the inclusive photon spectrum decreases by 20% +/- 5% between pt = 1.65 GeV/c and pt = 2.4 GeV/c in the most central events, indicating that relative to pi0 -> photon photon decay the contribution of other photon sources is substantially increasing.

9 data tables

Data for the electron-positron invariant mass plots

dE/dx deviant distributions of positive daughters

Data for the number of reconstructed photon conversions as a function of conversion location plots

More…

Bose-Einstein correlations of charged pion pairs in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 93 (2004) 152302, 2004.
Inspire Record 642225 DOI 10.17182/hepdata.140436

Bose-Einstein correlations of identically charged pion pairs were measured by the PHENIX experiment at mid-rapidity in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV. The Bertsch-Pratt radius parameters were determined as a function of the transverse momentum of the pair and as a function of the centrality of the collision. Using the \it{full} Coulomb correction, the ratio $R_{\rm out}/R_{\rm side}$ is smaller than unity for $<k_{\rm T}>$ from 0.25 to 1.2 GeV/c and for all measured centralities. However, using recently developed partial Coulomb correction methods, we find that $R_{\rm out}/R_{\rm side}$ is 0.8-1.1 for the measured $<k_{\rm T}>$ range, and approximately constant at unity with the number of participants.

5 data tables

Panel (a) and (b) show one-dimensional correlation functions for $\pi^+\pi^+$ and $\pi^-\pi^-$. The bottom figures show the three-dimensional correlation function for $\pi^-\pi^-$ with the full Coulomb (open circle) and without Coulomb (filled triangle) corrections for 0.2 < $k_T$ < 2.0 GeV/$c$ for 0-30% centrality. The projection of the 3-D correlation functions are averaged over the lowest 40 MeV in the orthogonal directions. The error bars are statistical only. The lines overlaid on the open circles (filled triangles) correspond to fits to Eq. 1 (Eq. 2) over the entire distribution. Panel (c) shows the one-dimensional correlation function of unlike-signed pions for 0.2 < $k_T$ < 2.0 GeV/$c$. The two overlaid histograms show calculations for the full (dashed) and the 50% partial (solid) Coulomb corrections. $<k_T>$ ~ 0.45 ($\pm$0.17) GeV/$c$ and $<N_{part}>$ ~ 281 ($\pm$4).

The $k_T$ dependence of the Bertsch-Pratt radius parameters and $\lambda$ for charged pions for 0-30% centrality. Filled triangles show the results from fits to a core-halo structure by Eq. 2, with statistical error bars and systematic error bands. Open circles and squares show the results from the full (Eq. 1) and 50% partial (Eq. 3) Coulomb corrections with statistical error bars, respectively. Results at 130 GeV by PHENIX are given by filled circles.

The $k_T$ dependence of the Bertsch-Pratt radius parameters and $\lambda$ for charged pions for 0-30% centrality. Filled triangles show the results from fits to a core-halo structure by Eq. 2, with statistical error bars and systematic error bands. Open circles and squares show the results from the full (Eq. 1) and 50% partial (Eq. 3) Coulomb corrections with statistical error bars, respectively. Results at 130 GeV by PHENIX are given by filled circles.

More…

Azimuthally sensitive HBT in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 93 (2004) 012301, 2004.
Inspire Record 635102 DOI 10.17182/hepdata.97122

We present the results of a systematic study of the shape of the pion distribution in coordinate space at freeze-out in Au+Au collisions at RHIC using two-pion Hanbury Brown-Twiss (HBT) interferometry. Oscillations of the extracted HBT radii vs. emission angle indicate sources elongated perpendicular to the reaction plane. The results indicate that the pressure and expansion time of the collision system are not sufficient to completely quench its initial shape.

4 data tables

Squared HBT radii relative to the reaction plane angle for three centrality classes.

Squared HBT radii relative to the reaction plane angle for four kT (GeV/c) bins, 20-30% centrality events.

Fourier coefficients of azimuthal oscillations of HBT radii vs number of participating nucleons, for three kT (GeV/c) bins. Larger participant numbers correspond to more central collisions.

More…

Study of the Process e+ e- --> pi0 pi0 gamma in c.m. Energy Range 600--970 MeV at CMD-2

The CMD-2 collaboration Akhmetshin, R.R. ; Aulchenko, V.M. ; Banzarov, V.S. ; et al.
Phys.Lett.B 580 (2004) 119-128, 2004.
Inspire Record 630009 DOI 10.17182/hepdata.41906

The cross section of the process e+ e- --> pi0 pi0 gamma has been measured in the c.m. energy range 600--970 MeV with the CMD-2 detector. The following branching ratios have been determined: B(rho --> pi0 pi0 gamma) =(5.2^{+1.5}_{-1.3} +- 0.6)x10^{-5} and B(omega --> pi0 pi0 gamma) =(6.4^{+2.4}_{-2.0} +- 0.8)x10^{-5}. Evidence for the rho --> f0(600) gamma decay has been obtained: B(rho --> f0(600) gamma) = (6.0^{+3.3}_{-2.7}\pm 0.9)x10^{-5}. From a search for the process e+ e- --> eta pi0 gamma the following upper limit has been obtained: B(omega --> eta pi0 gamma) < 3.3 10^{-5} at 90% CL.

1 data table

The Born and 'bare' cross sections.


Azimuthal anisotropy at RHIC: The first and fourth harmonics.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 127 (2021) 069901, 2021.
Inspire Record 631713 DOI 10.17182/hepdata.102322

We report the first observations of the first harmonic (directed flow, v_1), and the fourth harmonic (v_4), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v_2) generated at RHIC. From the correlation of v_2 with v_1 it is determined that v_2 is positive, or {\it in-plane}. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.

6 data tables

$v_1$ of charged particles as a function of pseudorapidity for 10-70% centrality. Non-flow systematic uncertainties are approximately 20%.

$v_2$ with respect to the second harmonic event plane as a function of $p_T$ for the minimum bias Au+Au collisions. Background from secondary particles is expected to be less than 15%. Non-flow systematic uncertainties are approximately 20%. Fluctuations in initial geometry can lead to an effect of about a factor of 1.2 to 1.5.

$v_4$ with respect to the second harmonic event plane as a function of $p_T$ for the minimum bias Au+Au collisions. Background from secondary particles is expected to be less than 15%. Non-flow systematic uncertainties are approximately 20%. Fluctuations in initial geometry can lead to an effect of about a factor of 1.2 to 1.5.

More…

Cross sections and transverse single-spin asymmetries in forward neutral pion production from proton collisions at s**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 171801, 2004.
Inspire Record 631869 DOI 10.17182/hepdata.101348

Measurements of the production of forward high-energy pi0 mesons from transversely polarized proton collisions at \sqrt{s}=200 GeV are reported. The cross section is generally consistent with next-to-leading order perturbative QCD calculations. The analyzing power is small at x_F below about 0.3, and becomes positive and large at higher x_F, similar to the trend in data at \sqrt{s}<=20 GeV. The analyzing power is in qualitative agreement with perturbative QCD model expectations. This is the first significant spin result seen for particles produced with p_T>1 GeV/c at a polarized proton collider.

2 data tables

Inclusive $\pi^{0}$ production cross section versus leading $\pi^{0}$ energy ($E_{\pi}$). The average transverse momentum ($\langle p_{T}\rangle$) is correlated with $E_{\pi}$, as the PFPD was at a fixed pseudorapidity ($\eta$). The inner error bars are statistical, and are smaller than the symbols for most points. The outer error bars combine these with the $E_{\pi}$-dependent systematic errors. The curves are NLO pQCD calculations evaluated at $\eta=3.8$ [29-31].

Analyzing powers versus Feynman $x$ ($x_{F}$). The average transverse momentum ($\langle p_{T}\rangle$) is correlated with $x_{F}$. The solid points are for identified $\pi^{0}$ mesons. The open points are for the total energy ($E_{\scriptsize{\mbox{tot}}}$), shifted by $x_{F}+0.01$. The inner error bars are statistical, and the outer combine these with the point-to-point systematic errors. The curves are from pQCD models evaluated at $p_{T}=1.5$ GeV/c [14-17]. The $A_{N}$ values are proportional to $A^{\scriptsize{\mbox{CNI}}}_{N}$, assumed to be 0.013 at 100 GeV.


Identified particle distributions in p p and Au + Au collisions at s**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 112301, 2004.
Inspire Record 630160 DOI 10.17182/hepdata.100591

Transverse mass and rapidity distributions for charged pions, charged kaons, protons and antiprotons are reported for sqrt{s_NN}=200 GeV pp and Au+Au collisions at RHIC. The transverse mass distributions are rapidity independent within |y|<0.5, consistent with a boost-invariant system in this rapidity interval. Spectral shapes and relative particle yields are similar in pp and peripheral Au+Au collisions and change smoothly to central Au+Au collisions. No centrality dependence was observed in the kaon and antiproton production rates relative to the pion production rate from medium-central to central collisions. Chemical and kinetic equilibrium model fits to our data reveal strong radial flow and relatively long duration from chemical to kinetic freeze-out in central Au+Au collisions. The chemical freeze-out temperature appears to be independent of initial conditions at RHIC energies.

15 data tables

invariant yield as function of transverse mass for $\pi^{\pm},K^{\pm}$ and inclusive $p$ and $\bar{p}$ at mid-rapidity ($|y|<0.1$) for pp (bottom) and Au+Au events from $70-80\%$ (second bottom) to the $0-5\%$ centrality bin (top). Statistical and point-to-point systematic errors have been added in quadrature. Additional correlated systematic error due to uncertainty in the normalization is estimated to be $5\%$. Open circles are for positive particles (all proton spectra are scaled by 0.8), and closed triangles are for negative particles. The curves shown (Bose-Einstein fits for $\pi^-$ and blast-wave model fits for $K^-$ and $\bar{p}$) are explained in the text.

invariant yield as function of transverse mass for $\pi^{\pm},K^{\pm}$ and inclusive $p$ and $\bar{p}$ at mid-rapidity ($|y|<0.1$) for pp (bottom) and Au+Au events from $70-80\%$ (second bottom) to the $0-5\%$ centrality bin (top). Statistical and point-to-point systematic errors have been added in quadrature. Additional correlated systematic error due to uncertainty in the normalization is estimated to be $5\%$. Open circles are for positive particles (all proton spectra are scaled by 0.8), and closed triangles are for negative particles. The curves shown (Bose-Einstein fits for $\pi^-$ and blast-wave model fits for $K^-$ and $\bar{p}$) are explained in the text.

invariant yield as function of transverse mass for $\pi^{\pm},K^{\pm}$ and inclusive $p$ and $\bar{p}$ at mid-rapidity ($|y|<0.1$) for pp (bottom) and Au+Au events from $70-80\%$ (second bottom) to the $0-5\%$ centrality bin (top). Statistical and point-to-point systematic errors have been added in quadrature. Additional correlated systematic error due to uncertainty in the normalization is estimated to be $5\%$. Open circles are for positive particles (all proton spectra are scaled by 0.8), and closed triangles are for negative particles. The curves shown (Bose-Einstein fits for $\pi^-$ and blast-wave model fits for $K^-$ and $\bar{p}$) are explained in the text.

More…

Measurement of non-random event-by-event fluctuations of average transverse momentum in s**(1/2) = 200-GeV Au + Au and p + p collisions.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 93 (2004) 092301, 2004.
Inspire Record 630161 DOI 10.17182/hepdata.143470

Event-by-event fluctuations of the average transverse momentum of produced particles near mid-rapidity have been measured by the PHENIX Collaboration in sqrt(s_NN)=200 GeV Au+Au and p+p collisions at the Relativistic Heavy Ion Collider. The fluctuations are observed to be in excess of the expectation for statistically independent particle emission for all centralities. The excess fluctuations exhibit a dependence on both the centrality of the collision and on the transverse momentum window over which the average is calculated. Both the centrality and p_T dependence can be well reproduced by a simulation of random particle production with the addition of contributions from hard scattering processes.

4 data tables

Comparisons between the data and mixed event $M_{p_T}$ distributions for the representative 0-5% centrality classes. Also given are the residuals between the data and mixed events in units of standard deviations of the data points form the mixed event points.

Comparisons between the data and mixed event $M_{p_T}$ distributions for the representative 30-35% centrality classes. Also given are the residuals between the data and mixed events in units of standard deviations of the data points form the mixed event points.

$F_{p_T}$ (in percent, 0.2 GeV/$c$ < $p_T$ < 2.0 GeV/$c$) as a function of centrality, which is expressed in terms of the number of participants in the collision, $N_{part}$.

More…

Pion, kaon, proton and anti-proton transverse momentum distributions from p + p and d + Au collisions at s(NN)**1/2 = 200-GeV.

The STAR collaboration Adams, John ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 616 (2005) 8-16, 2005.
Inspire Record 628232 DOI 10.17182/hepdata.98859

Identified mid-rapidity particle spectra of $\pi^{\pm}$, $K^{\pm}$, and $p(\bar{p})$ from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor ($R_{dAu}$) between protons $(p+\bar{p})$ and charged hadrons ($h$) in the transverse momentum range $1.2<{p_{T}}<3.0$ GeV/c is measured to be $1.19\pm0.05$(stat)$\pm0.03$(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of $(p+\bar{p})/h$ in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.

5 data tables

The invariant yields of $\pi^{\pm}$, $K^{\pm}$, p and their anti-particles as a function of $p_{T}$ from d+Au and NSD p+p events at 200 GeV. The rapidity range was -0.5 $<$ y $<$ 0.0 with the direction of the outgoing Au ions as negative rapidity. Errors are statistical.

The invariant yields of $\pi^{\pm}$, $K^{\pm}$, p and their anti-particles as a function of $p_{T}$ from d+Au and NSD p+p events at 200 GeV. The rapidity range was -0.5 $<$ y $<$ 0.0 with the direction of the outgoing Au ions as negative rapidity. Errors are statistical.

The invariant yields of $\pi^{\pm}$, $K^{\pm}$, p and their anti-particles as a function of $p_{T}$ from d+Au and NSD p+p events at 200 GeV. The rapidity range was -0.5 $<$ y $<$ 0.0 with the direction of the outgoing Au ions as negative rapidity. Errors are statistical.

More…

Event-by-event < p(t) > fluctuations in Au Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 71 (2005) 064906, 2005.
Inspire Record 626905 DOI 10.17182/hepdata.102942

We present the first large-acceptance measurement of event-wise mean transverse momentum mean p_t fluctuations for Au-Au collisions at nucleon-nucleon center-of-momentum collision energy sqrt{s_{NN}} = 130 GeV. The observed non-statistical mean p_t fluctuations substantially exceed in magnitude fluctuations expected from the finite number of particles produced in a typical collision. The r.m.s. fractional width excess of the event-wise mean p_t distribution is 13.7 +/- 0.1(stat) +/- 1.3(syst)% relative to a statistical reference, for the 15% most-central collisions and for charged hadrons within pseudorapidity range |eta|<1, 2pi azimuth and 0.15 < p_t < 2 GeV/c. The width excess varies smoothly but non-monotonically with collision centrality, and does not display rapid changes with centrality which might indicate the presence of critical fluctuations. The reported mean p_t fluctuation excess is qualitatively larger than those observed at lower energies and differs markedly from theoretical expectations. Contributions to mean p_t mean fluctuations from semi-hard parton scattering in the initial state and dissipation in the bulk colored medium are discussed.

3 data tables

Event frequency distribution on $\sqrt{n}(\langle p_t\rangle - \hat{p}_t)/\sigma\hat{p}_t$ for 80% of primary charged hadrons in $|\eta|$ < 1 for 183k central events

Difference in upper panel between data and gamma reference

Centrality dependences of the measured charge independent (CI) and charge dependent (CD) difference factors $\Delta\sigma_{p_t:n}$ plus the corresponding values extrapolated to 100% tracking efficiency. Statistical errors $\pm$ 0.5 MeV/c; systematic errors are $\pm$ 9%. Difference factors extrapolated to 100% tracking efficiency and no secondary particle contamination. Uncertainties are $\pm$ 12%.