The NuTeV experiment at Fermilab has obtained a unique high statistics sample of neutrino and anti-neutrino interactions using its high-energy sign-selected beam. We present a measurement of the differential cross section for charged-current neutrino and anti-neutrino scattering from iron. Structure functions, F_2(x,Q^2) and xF_3(x,Q^2), are determined by fitting the inelasticity, y, dependence of the cross sections. This measurement has significantly improved systematic precision as a consequence of more precise understanding of hadron and muon energy scales.
Measurement of F2 at X = 0.015.
Measurement of F2 at X = 0.045.
Measurement of F2 at X = 0.080.
A new structure function analysis of CCFR deep inelastic nu-N and nubar-N scattering data is presented for previously unexplored kinematic regions down to Bjorken x=0.0045 and Q^2=0.3 GeV^2. Comparisons to charged lepton scattering data from NMC and E665 experiments are made and the behavior of the structure function F2_nu is studied in the limit Q^2 -> 0.
F2 measurements.
We present an improved determination of the proton structure functions $F_{2}$ and $xF_{3}$ from the CCFR $\nu $-Fe deep inelastic scattering (DIS) experiment. Comparisons to high-statistics charged-lepton scattering results for $F_{2}$ from the NMC, E665, SLAC, and BCDMS experiments, after correcting for quark-charge and heavy-target effects, indicate good agreement for $x>0.1$ but some discrepancy at lower x. The $Q^{2}$ evolution of the structure functions yields the quantum chromodynamics (QCD) scale parameter $\Lambda_{\bar{MS}}^{NLO,(4)}=337 \pm 28$(exp.) MeV. This corresponds to a value of the strong coupling constant at the scale of mass of the Z-boson of $\alpha _{S}(M_{Z}^{2})=0.119 \pm 0.002 (exp.) \pm 0.004 (theory)$ and is one of the most precise measurements of this quantity.
No description provided.
No description provided.
No description provided.
Total neutrino and antineutrino cross sections in the energy range 15 to 150 GeV, and the nucleon structure functions, F 2 ( x , Q 2 ) and xF 3 ( x , Q 2 ) in the Q 2 range 0.5 to 50 (GeV/ c ) 2 have been measured using a data sample of 3000 neutrino and 3800 antineutrino events. The structure functions show a weak Q 2 dependence at different x values.
Measured charged current total cross section.
Measured charged current total cross section.
ERRORS CONTAIN 10 P.C. SYSTEMATIC ERROR WHICH HAS BEEN LINEARLY ADDED TO THE STATISTICAL ERROR.
On a selected sample of 2171 events, observed in the big heavy liquid bubble chamber Gargamelle at CERN, the charged current total cross section for antineutrino on nucleons has been determined up to the laboratory energy E v ̄ = 8 GeV . The total cross section is found to be a linear function of the antineutrino energy expressed by σ tot (E v ̄ ) = (0.26 ± 0.020) × 10 −38 × E v ̄ ( GeV ) cm 2 . The energy dependence of 〈q 2 〉 v ̄ is found to be given by 〈q 2 〉 v ̄ = (0.15 ± 0.04)E v ̄ + (0.05 ± 0.12) ( GeV /c) 2 . With a simplified nuclear model the ratio of cross sections on neutrons andprotons has been estimated as a function of energy and for two different values of the scaling variable x . The results are compared with the prediction of the naive quark parton model.
Measured charged current total cross section.
The v and v nucleon total cross-sections have been determined as a function of energy using a sample of 2500 v and 950 v event. The results are compared with predictions of scaling and charge symmetry hypotheses.
Measured charged current total cross section.
Measured charged current total cross section.