A high-statistics measurement of the reaction π − p→ η n; η →2 γ has been performed at the 70 GeV Serpukhov accelerator for 15, 20, 25, 30 and 40 GeV/ c incident pion momentum using the NICE set-up with its associated 648-channel hodoscope spectrometer for γ-ray detection. It is found that the spin-flip and non-spin-flip amplitudes can be parametrized, for small | t |, as exponentials with the same slopes to within a few percent. For | t | ≳ 1 (GeV/ c ) 2 there is a break in the differential cross section. In addition, the A 2 effective trajectory deviates markedly for | t | ≳ 1 GeV/ c ) 2 from the linear behaviour valid for smaller | t |.
No description provided.
No description provided.
No description provided.
Final results of our measurements of elastic proton-proton scattering at the CERN Intersecting Storage Rings (ISR) for c.m. energies √ s from 23 to 63 GeV and momentum transfers | t | from 0.8 to 10 GeV 2 are presented. Absolute differential cross sections have been obtained using the split-field magnet detector facility (SFM) at the five standard energies for integrated luminosities ranging from 0.3 to 4.9 (pb) −1 . The rising total cross section is found to define a scale for diffractive phenomena near the forward peak, including the position of the diffraction minimum near t = −1.4 GeV 2 . The cross section at the minimum is strongly energy dependent, approximately as the ratio of the real to imaginary part of the scattering amplitude in the forward direction. The phase of the scattering amplitude is found to change sign near the minimum. The component of diffraction scattering beyond the second maximum has a much weaker t -dependence than expected in simple eikonal or constituent pictures connecting this region to the forward peak. A further break in slope is observed near t = −6 GeV 2 . There is no evidence for another minimum for t values up to 10 GeV 2 .
No description provided.
No description provided.
No description provided.
Approximately 350 A 2 + events have been observed in the reaction π + p → K + K S 0 p ( K S 0 → π + π − ) at an incident π + laboratory momentum of 12.7 GeV/ c . The events are distributed over a range of four-momentum transfer squared 0.01 ⩽ − t ⩽ 0.60 (GeV/ c ) 2 and K + K S 0 mass 1.11 ⩽ m K + K S 0 ⩽ 1.51 GeV . A Breit-Wigner fit to the mass spectrum yields a mass for the A 2 + , m A 2 + = 1.324 ± 0.005 GeV, and a width Γ 0 = 0.110 ± 0.018 GeV. We find a cross section σ ( π + p → A 2 + p) = 1.71 ± 0.30 μb referring to the above-mentioned mass and t range and A 2 + → K + K S O with K S 0 → π + π − . The spin-space density matrix in the Gottfried-Jackson frame is practically saturated by ϱ 11 ⋍ ϱ 1−1 = 1 2 suggesting natural parity exchanges only. There is a forward dip in the angular distribution consistent with dominance of s -channel net helicity flip amplitudes and ϱ and f Regge exchanges suffice to describe adequately our differential cross sections.
SUBTRACTED BACKGROUND IS PHASE SPACE. FITTED D(SIG)/DT SLOPE IS 9.5 +- 0.9 GEV**-2.
SUBTRACTED BACKGROUND IS AN S-WAVE WITH SLOPE OF 8 GEV**-2. FITTED D(SIG)/DT SLOPE IS 6.9 +- 0.6 GEV**-2.
FROM D(SIG)/DT. ERROR INCLUDES 15 PCT SCALE ERROR ADDED QUADRATICALLY.
Results of two spark chamber experiments on A 2 − production in the reaction π − p → K − K S 0 (→ π + π − )p at 9.8 and 18.8 GeV are presented. Decay angular distributions and differential cross sections are given, and the energy dependence of the cross section σ [ π − p → A 2 − (→ K − K 0 )p] is compared with results from π − p → A 2 − (→ 3 π )p.
FITS WITH CONSTANT BACKGROUNDS. A TWO-PARAMETER LINEAR BACKGROUND GIVES MUCH LARGER ERRORS.
INTEGRATED OVER M(K AK) = 1.20 TO 1.42 GEV.
No description provided.
The differential cross section of the reaction ( γ p → p φ ) has been measured in the t range 0 ⩽ t ⩽ 0.4 GeV 2 and for photon energies from 3.0 to 6.7 GeV. In particular for the small t region the measurement accuracy was better than 10%. We obtained for the slope parameter B in an exponential parametrization of the differential cross section d σ /d t = A e − Bt values of B ⋍ 6 ± 0.5 GeV −2 which are significantly larger than the slopes obtained by most other experiments at higher t values. This indicates a t dependence of B particularly in the small t region.
No description provided.
No description provided.
No description provided.
None
OVERALL NORMALIZATION ERROR NOT INCLUDED. -TMIN IS 0.015 (0.023) GEV**2 FOR THE LAMBDA (SIGMA0) REACTION.
INCLUDING NORMALIZATION UNCERTAINTY IN ERRORS. USING EMPIRICAL FITS TO D(SIG)/DT FOR -T > 1.0 GEV**2.
No description provided.
Proton elastic scattering off a polarized proton target has been measured at 150 GeV/ c , in the |; t |-range 0.2–3.0 GeV 2 . The results on polarization and differential cross section are presented.
No description provided.
No description provided.
We have measured π±p and pp elastic differential cross sections in the range |cosθc.m.|<0.35 for incident momenta from 2 to 9.7 GeV/c for π−p and pp and from 2 to 6.3 GeV/c for π+p. We find that the fixed-c.m.-angle πp differential cross sections cannot be described as simple functions of s. The data are compared to the energy and angular dependence predicted by the constituent model of Gunion, Brodsky, and Blankenbecler.
No description provided.
No description provided.
No description provided.
Measurements of the total cross section have been performed at the ISR with c.m. energies between 23.5 GeV and 62.5 GeV. Two independent experimental methods have been applied, a measurement of total interaction rate and of small angle elastic scattering. Both experiments give consistent results showing that the total cross section increases by (11.8±1.5) % over the ISR energy range. This experiment has also measured the slope of the forward diffraction peak in elastic scattering at small momentum transfer. The elastic cross section shows the same relative rise as the total cross section, and the ratio λ of elastic to total cross section approaches a constant value of λ =0.178±0.003.
.
TOTAL CROSS SECTION FROM (INTERACTION RATE)/(LUMINOSITY). SYSTEMATIC ERROR <0.8 PCT.
TOTAL CROSS SECTION FROM APPLYING THE OPTICAL THEOREM TO SMALL ANGLE ELASTIC SCATTERING EXTRAPOLATED TO T=0.
The K π − system produced in the reaction K p → K 0 π − p at 4.2 GeV/ c is studied using high-statistics bubble-chamber data. The spin-parity structure is analysed as a function of the K 0 π − mass up to 1.52 GeV. Production of K ∗ (890) and K ∗ (1420) is observed in helicity-0 and helicity-1 states. Contributions of natural and unnatural parity exchange are present. Considerable S-wave production is observed over the whole mass region considered. We also study the t ′ dependence of the K ∗ (890) and K ∗ (1420) amplitudes. A comparison of our results on K ∗ (890) production with the results of an analysis of charge-exchange K ∗ (890) production, allows the separation of I = 0 and I = 1 exchange amplitudes. Some qualitative remarks are made concerning K ∗ (1420) production.
No description provided.
PARTIAL WAVE ANALYSIS ASSUMING SPIN-COHERENCE TO OBTAIN SPIN-PARITY STRUCTURE AND T DEPENDENCE OF P-WAVE AND D-WAVE AMPLITUDES.