The multiplicity distributions of charged particles in restricted rapidity intervals inZ0 hadronic decays measured by the DELPHI detector are presented. The data reveal a shoulder structure, best visible for intervals of intermediate size, i.e. for rapidity limits around ±1.5. The whole set of distributions including the shoulder structure is reproduced by the Lund Parton Shower model. The structure is found to be due to important contributions from 3-and 4-jet events with a hard gluon jet. A different model, based on the concept of independently produced groups of particles, “clans”, fluctuating both in number per event and particle content per clan, has also been used to analyse the present data. The results show that for each interval of rapidity the average number of clans per event is approximately the same as at lower energies.
Data for both hemispheres.
Data for both hemispheres.
Data for both hemispheres.
Data on multiplicities of charged particles produced in proton-nucleus and nucleus-nucleus collisions at 200 GeV per nucleon are presented. It is shown that the mean multiplicity of negative particles is proportional to the mean number of nucleons participating in the collision both for nucleus-nucleus and proton-nucleus collisions. The apparent consistency of pion multiplicity data with the assumption of an incoherent superposition of nucleon-nucleon collisions is critically discussed.
No description provided.
No description provided.
No description provided.
An angular method of identifying diffractive excitation (DE) events for interactions of a hadron beam in nuclear emulsion is applied to identifying DE events in interactions of heavy ions beams. The ‘‘apparent’’ mean free paths (MFP) of DE processes for O16 (28Si) beams are 1.00±0.12, 2.4−0.7+1.6, and 2.2±0.4 (1.5±0.2) m, respectively, at 200, 60, and 14.6 GeV/nucleon, which corresponds to 20–10% of the MFP for total inelastic interactions. Distinctive features of diffractively excited nuclei are discussed.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Elastic differential cross sections for K + mesons scattered from nat C and 6 Li targets have been measured at an incident momentum of 715 MeV/c and at angles of 7° to 42° in the laboratory frame. The experimental cross sections agree, within errors, with two different parameter-free impulse approximation calculations. To reduce the effects of the systematic errors, the ratio of the experimental cross sections for nat C to 6 Li is compared to the theoretical values, and these ratios do not agree with theory. This discrepancy suggests either a density-dependent alteration of K + -nucleon amplitudes or a failure of the optical potential calculations to describe these nuclides adequately.
No description provided.
No description provided.
Using the CUSB-II detector at CESR we have measured the B ∗ cross section in the energy range from s = 10.61–10.65 GeV and 10.70 GeV to be 0.16±0.03 nb and 0.33±0.13 nb respectively. The photon energy for B ∗ →Bγ decays is measured to be 45.4±0.8 MeV, in agreement with our earlier determination. The implication of this measurement for future B factories is discussed.
Errors include systematic uncertainties.
We present a study of energy-energy correlations based on 83 000 hadronic Z 0 decays. From this data we determine the strong coupling constant α s to second order QCD: α s (91.2 GeV)=0.121±0.004(exp.)±0.002(hadr.) −0.006 +0.009 (scale)±0.006(theor.) from the energy-energy correlation and α s (91.2 GeV)=0.115±0.004(exp.) −0.004 +0.007 (hadr.) −0.000 +0.002 (scale) −0.005 +0.003 (theor.) from its asymmetry using a renormalization scale μ 1 =0.1 s . The first error (exp.) is the systematic experimental uncertainly, the statistical error is negligible. The other errors are due to hadronization (hadr.), renormalization scale (scale) uncertainties, and differences between the calculated second order corrections (theor.).
Statistical errors are equal to or less than 0.6 pct in each bin. There is also a 4 pct systematic uncertainty.
ALPHA_S from the EEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.
ALPHA_S from the AEEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.
We report on a systematic study of midrapidity transverse energy production and forward energy flow in interactions of16O and32S projectiles with S, Cu, Ag and Au targets at 60 and 200 GeV/nucleon. The variation of the shape of theET distributions with target and projectile mass can be understood from collision geometry. AverageET values determined for central collisions show an increasing stopping power for heavier target nuclei. A higher relative stopping is observed at 60 GeV/nucleon than at 200 GeV/nucleon. Bjorken estimates of the energy density reach approximately 3 GeV/fm3 in highET events at 200 GeV/nucleon with16O and32S projectiles. The systematics of the data and the shapes ofET and pseudorapidity distributions are well described by the Lund model Fritiof.
No description provided.
No description provided.
No description provided.
Using the Crystal Ball detector at thee+e− storage ring DORIS II, we have measured the branching fraction to muon pairsBμμ of the Υ(
Corrected cross section. Statistical and point to point systematic errors combined. Additional systematic error given above. The storage ring SQRT(S) has a 7.9 +- 0.2 MeV energy spread around the values given.
Corrected cross section. Statistical and point to point systematic errors combined. Additional systematic error given above.The storage ring SQRT(S) has a 8.2 +- 0.3 MeV energy spread around the values given.
The OPAL detector at LEP is used to measure the branching ratio of theZ0 into invisible particles by measuring the cross section of single photon events ine+e− collisions at centre-of-mass energies near theZ0 resonance. In a data sample of 5.3 pb−1, we observe 73 events with single photons depositing more than 1.5 GeV in the electromagnetic calorimeter, with an expected background of 8±2 events not associated with invisibleZ0 decay. With this data we determine theZ0 invisible width to be 0.50±0.07±0.03 GeV, where the first error is statistical and the second systematic. This corresponds to 3.0±0.4±0.2 light neutrino generations in the Standard Model.
No description provided.