Improved measurement of the anti-d/anti-u asymmetry in the nucleon sea.

The NuSea collaboration Towell, R.S. ; McGaughey, P.L. ; Awes, T.C. ; et al.
Phys.Rev.D 64 (2001) 052002, 2001.
Inspire Record 554316 DOI 10.17182/hepdata.22184

Measurements of the ratio of Drell-Yan yields from an 800 \rm{GeV/c} proton beam incident on liquid hydrogen and deuterium targets are reported. Approximately 360,000 Drell-Yan muon pairs remained after all cuts on the data. From these data, the ratio of anti-down ($\bar{d}$) to anti-up ($\bar{u}$) quark distributions in the proton sea is determined over a wide range in Bjorken-$x$. These results confirm previous measurements by E866 and extend them to lower $x$. From these data, $(\bar{d}-\bar{u})$ and $\int(\bar{d}-\bar{u})dx$ are evaluated for $0.015<x<0.35$. These results are compared with parameterizations of various parton distribution functions, models and experimental results from NA51, NMC, and HERMES.

4 data tables

Cross section ratio for the high mass data set. Additional systematic error is 0.97 PCT for this data set.

Cross section ratio for the intermediate mass data set. Additional systematic error is 0.94 PCT for this data set.

Cross section ratio for the low mass data set. Additional systematic error is 0.87 PCT for this data set.

More…

He-3 and He-4 production by 800-MeV protons from C-12, Ti, and Pb at forward angles

Barlow, D.B. ; Nefkens, B.M.K. ; Pillai, C. ; et al.
Phys.Rev.C 45 (1992) 293-298, 1992.
Inspire Record 337057 DOI 10.17182/hepdata.26108

The doubly differential cross section for the production of He3 and He4 by 800 MeV protons from C12, Ti, and Pb has been measured at laboratory angles of 6° and 15°. The momentum of the detected helium nuclei varied from 1 to 2 GeV/c, the maximum being well above the incident proton momentum of 1.46 GeV/c. The cross sections were found to increase with increasing target mass and decrease with increasing momentum and scattering angle. In our momentum region, the He3 production cross section is 1.5–10 times larger than He4 depending on the target and the momentum. The data are consistent with the hypothesis that the dominant reaction mechanism is a direct process where the initial nucleon-nucleon scattering is followed by a sequential pickup of neutrons.

8 data tables

No description provided.

No description provided.

No description provided.

More…

Test of Scaling of the Massive Dihadron Cross-section

Kaplan, D.M. ; Guo, R. ; Brown, C.N. ; et al.
Phys.Rev.D 41 (1990) 2334, 1990.
Inspire Record 285484 DOI 10.17182/hepdata.22990

Measurements of the cross section for production of massive dihadrons by 800-GeV protons incident on a tungsten target are presented. These are compared with measurements taken at lower and higher s and with perturbative-QCD predictions. Scaling and A-dependence behaviors observed at lower energies are confirmed, and good agreement with QCD is obtained. Model dependences of earlier measurements are discussed.

2 data tables

No description provided.

Triple differential cross section. Note that the errors plotted in the original figure are 2 time too large. The numbers given here are correct.


Limit on the anti-d / anti-u asymmetry of the nucleon sea from Drell-Yan production

McGaughey, P.L. ; Moss, J.M. ; Alde, D.M. ; et al.
Phys.Rev.Lett. 69 (1992) 1726-1728, 1992.
Inspire Record 344919 DOI 10.17182/hepdata.19848

We present an analysis of 800-GeV proton-induced Drell-Yan production data from isoscalar targets 2H and C, and from W, which has a large neutron excess. The ratio of cross sections per nucleon, R-σW/σIS, is sensitive to the difference between the d¯(x) and u¯(x) structure functions of the proton. We find that R is close to unity in the range 0.04≤x≤0.27, allowing upper limits to be set on the d¯-u¯ asymmetry. Additionally, the shape of the differential cross section m3 d2σ/dxF dm for 2H at xF≊0 shows no evidence of an asymmetric sea in the proton. We examine the implications of these data for various models of the violation of the Gottfried sum rule in deep-inelastic lepton scattering.

1 data table

Upper limit at the 2sigma statistical error level. Mass of MU+ MU- in GeV.


Nuclear dependence of the production of Upsilon resonances at 800-GeV

Alde, D.M. ; Baer, H.W. ; Carey, T.A. ; et al.
Phys.Rev.Lett. 66 (1991) 2285-2288, 1991.
Inspire Record 315062 DOI 10.17182/hepdata.19910

The yields of the 1S and the sum of the 2S and 3S Υ resonances have been measured for 800-GeV protons incident on targets of H2, C, Ca, Fe, and W. A significant nuclear dependence is seen in the yield per nucleon which, within errors, is the same for the Υ(1S) and Υ(2S+3D) states. A large decrease in the relative yield from heavy nuclei is found for the range xF<0. Significant nuclear dependence is also observed in the pt distribution. Differential cross sections for the Υ(1S) for H2 are presented over the ranges 0.24≤pt≤3.4 GeV/c and -0.15≤xF≤0.5.

8 data tables

Mass dependence as a function of feynman X for UPSI(1S) production.

Mass dependence as a function of feynman X for UPSI(2S/3S) production.

Mass dependence as a function of transverse momentum for UPSI(1S) production.

More…

Nuclear dependence of neutral D meson production by 800-GeV/c protons

The E789 collaboration Leitch, M.J. ; Boissevain, J. ; Carey, T.A. ; et al.
Phys.Rev.Lett. 72 (1994) 2542-2545, 1994.
Inspire Record 371874 DOI 10.17182/hepdata.19694

The nuclear dependence for 800 GeV/c proton production of neutron D mesons has been measured near xF=0 in Experiment 789 at Fermilab. D mesons from beryllium and gold targets were detected with a pair spectrometer and a silicon vertex detector via their decay D→Kπ. No nuclear dependence is found, with a measured α=1.02±0.03±0.02. The measured differential cross section, dσ/dxF, for neutral-D-meson production at 〈xF〉=0.031 is 58±3±7 μb/nucleon. The integrated cross section obtained by extrapolation of the measured cross section to all xF is 17.7±0.9±3.4 μb/nucleon and is consistent with previous measurements.

8 data tables
More…

Observation of polarization in bottomonium production at s**(1/2) = 38.8-GeV

The NuSea collaboration Brown, C.N. ; Awes, T.C. ; Beddo, M.E. ; et al.
Phys.Rev.Lett. 86 (2001) 2529-2532, 2001.
Inspire Record 536629 DOI 10.17182/hepdata.19423

We present a measurement of the polarization observed for bottomonium states produced in p-Cu collisions at sqrt(s)=38.8 GeV. The angular distribution of the decay dimuons of the Upsilon(1S) state show no polarization at small xF and pT but significant positive transverse production polarization for either pT > 1.8 GeV/c or for xF > 0.35. The Upsilon(2S+3S) unresolved states show a large transverse production polarization at all values of xF and pT measured. These observations are compared with an NRQCD calculation that predicts a transverse polarization in bottomonium production arising from quark-antiquark fusion and gluon-gluon fusion diagrams.

6 data tables

The observed polarization in the Drell-Yan sideband region as a function of PT. There is an additional systematic uncertainty of 0.02 in the polarization measurements.

The observed polarization in the Drell-Yan sideband region as a function of XL. There is an additional systematic uncertainty of 0.02 in the polarization measurements.

The observed polarization in the UPSILON(1S) region as a function of PT. There is an additional systematic error of 0.06 in the polarization measurements.

More…

Parton energy loss limits and shadowing in Drell-Yan dimuon production.

The NuSea collaboration Vasilev, M.A. ; Beddo, M.E. ; Brown, C.N. ; et al.
Phys.Rev.Lett. 83 (1999) 2304-2307, 1999.
Inspire Record 501230 DOI 10.17182/hepdata.19445

A precise measurement of the ratios of the Drell-Yan cross section per nucleon for an 800 GeV/c proton beam incident on Be, Fe and W targets is reported. The behavior of the Drell-Yan ratios at small target parton momentum fraction is well described by an existing fit to the shadowing observed in deep-inelastic scattering. The cross section ratios as a function of the incident parton momentum fraction set tight limits on the energy loss of quarks passing through a cold nucleus.

13 data tables

Ratios of measured cross sections per nucleon for Drell Yan events versus di-muon mass.

Ratios of measured cross sections per nucleon for Drell Yan events versus X2.

Ratios of measured cross sections per nucleon for Drell Yan events versus XL.

More…

Measurement of the light antiquark flavor asymmetry in the nucleon sea.

The NuSea collaboration Hawker, E.A. ; Awes, T.C. ; Beddo, M.E. ; et al.
Phys.Rev.Lett. 80 (1998) 3715-3718, 1998.
Inspire Record 468098 DOI 10.17182/hepdata.42153

A precise measurement of the ratio of Drell-Yan yields from an 800 GeV/c proton beam incident on hydrogen and deuterium targets is reported. Over 140,000 Drell-Yan muon pairs with dimuon mass M_{mu+ mu-} >= 4.5 GeV/c^2 were recorded. From these data, the ratio of anti-down (dbar) to anti-up (ubar) quark distributions in the proton sea is determined over a wide range in Bjorken-x. A strong x dependence is observed in the ratio dbar/ubar, showing substantial enhancement of dbar with respect to ubar for x<0.2. This result is in fair agreement with recent parton distribution parameterizations of the sea. For x>0.2, the observed dbar/ubar ratio is much nearer unity than given by the parameterizations.

1 data table

No description provided.


Search for the decay D0 ---> mu+ mu-

The E789 collaboration Mishra, C.S. ; Brown, C.N. ; Cooper, W.E. ; et al.
Phys.Rev.D 50 (1994) R9-R12, 1994.
Inspire Record 374150 DOI 10.17182/hepdata.42371

Using a silicon-microstrip detector array to identify secondary vertices occurring downstream of a short platinum target, we have searched for the decay D0→μ+μ−. Normalized relative to the J/ψ→μ+μ− signal observed in the same data sample, for a 3.25-mm minimum decay distance our branching-ratio sensitivity is (4.8±1.4)×10−6 per event, and after background subtraction we observe -4.1±4.8 events. Using the statistical approach advocated by the Particle Data Group, we obtain a limit B(D0→μ+μ−)<3.1×10−5 at 90% confidence, confirming with a different technique the limit previously obtained by Louis et al. The interpretation of the upper limit involves complex statistical issues; we present another approach which is more suitable for combining the results of different experiments.

2 data tables

Measured branching ratio.

Classical 90 PCT upper limit of branching ratio.