Date

Discovery of suppressed charged-particle production in ultrarelativistic oxygen-oxygen collisions

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-HIN-25-008, 2025.
Inspire Record 3068407 DOI 10.17182/hepdata.165512

A hot and dense state of nuclear matter, known as the quark-gluon plasma, is created in collisions of ultrarelativistic heavy nuclei. Highly energetic quarks and gluons, collectively referred to as partons, lose energy as they travel through this matter, leading to suppressed production of particles with large transverse momenta ($p_\mathrm{T}$). Conversely, high-$p_\mathrm{T}$ particle suppression has not been seen in proton-lead collisions, raising questions regarding the minimum system size required to observe parton energy loss. Oxygen-oxygen (OO) collisions examine a region of effective system size that lies between these two extreme cases. The CMS detector at the CERN LHC has been used to quantify charged-particle production in inclusive OO collisions for the first time via measurements of the nuclear modification factor ($R_\mathrm{AA}$). The $R_\mathrm{AA}$ is derived by comparing particle production to expectations based on proton-proton (pp) data and has a value of unity in the absence of nuclear effects. The data for OO and pp collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_\mathrm{NN}}$ = 5.36 TeV correspond to integrated luminosities of 6.1 nb$^{-1}$ and 1.02 pb$^{-1}$, respectively. The $R_\mathrm{AA}$ is below unity with a minimum of 0.69 $\pm$ 0.04 around $p_\mathrm{T}$ = 6 GeV. The data exhibit better agreement with theoretical models incorporating parton energy loss as compared to baseline models without energy loss.

3 data tables

Inclusive charged particle spectra for pp collisions at 5.36 TeV for $3 < p_{T} (GeV) <103.6$. The errors represent statistical, systematics and normalization uncertainties.

Inclusive charged particle spectra for OO collisions at 5.36 TeV for $3 < p_{T} (GeV) <103.6$. The errors represent statistical, systematics and normalization uncertainties.

Inclusive charged particle R_{AA} for 5.36 TeV OO collisions for $3 < p_{T} (GeV) <103.6$. The errors represent statistical, systematics and normalization uncertainties.


Observation of long-range collective flow in OO and NeNe collisions and implications for nuclear structure studies

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-HIN-25-009, 2025.
Inspire Record 3062822 DOI 10.17182/hepdata.165513

The long-range collective flow of particles produced in oxygen-oxygen (OO) and neon-neon (NeNe) collisions is measured with the CMS detector at the CERN LHC. The data samples were collected at a center-of-mass energy per nucleon pair of 5.36 TeV, with integrated luminosities of 7 nb$^{-1}$ and 0.8 nb$^{-1}$ for OO and NeNe collisions, respectively. Two- and four-particle azimuthal correlations are measured over nearly five units of pseudorapidity. Significant elliptic ($v_2$) and triangular ($v_3$) flow harmonics are observed in both systems. The ratios of $v_n$ coefficients between NeNe and OO collisions reveal sensitivity to quadrupole correlations in the nuclear wave functions. Hydrodynamic models with $\textit{ab initio}$ nuclear structure inputs qualitatively reproduce the collision-overlap dependence of both the $v_n$ values and the NeNe to OO ratios. These measurements provide new constraints on hydrodynamic models for small collision systems and offer valuable input on the nuclear structure of $^{16}$O and $^{20}$Ne.

4 data tables

The $v_{2}\{2,\lvert\Delta\eta\rvert>2\}$, $v_{3}\{2,\lvert\Delta\eta\rvert>2\}$ and $v_{2}\{4\}$ values for charged particles as functions of centrality in OO collisions at 5.36 TeV.

The $v_{2}\{2,\lvert\Delta\eta\rvert>2\}$, $v_{3}\{2,\lvert\Delta\eta\rvert>2\}$ and $v_{2}\{4\}$ values for charged particles as functions of centrality in NeNe collisions at 5.36 TeV.

The $v_{2}\{2,\lvert\Delta\eta\rvert>2\}$ and $v_{2}\{4\}$ ratios for charged particles as functions of centrality in NeNe to OO collisions at 5.36 TeV.

More…

Measurement of D$^0$ meson photoproduction in ultraperipheral heavy ion collisions

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-HIN-24-003, 2025.
Inspire Record 2968597 DOI 10.17182/hepdata.156822

This Letter reports the first measurement of photonuclear D$^0$ meson production in ultraperipheral heavy ion collisions. The study is performed using lead-lead collision data, with an integrated luminosity of 1.38 nb$^{-1}$, collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 5.36 TeV. Photonuclear events, where one of the colliding nuclei breaks up and the other remains intact, are selected based on breakup neutron emissions and by requiring no particle activity in a large rapidity interval in the direction of the photon-emitting nucleus. The D$^0$ mesons are reconstructed via the D$^0$$\to$ K$^-$$π^+$ decay channel, with the cross section measured as a function of D$^0$ meson transverse momentum and rapidity. The results are compared with next-to-leading-order perturbative QCD calculations that employ recent parametrizations of the lead nuclear parton distribution functions, as well as with predictions based on the color glass condensate framework. This measurement is the first photonuclear collision study characterizing parton distribution functions of lead nuclei for parton fractional momenta $x$ (relative to the nucleon) ranging approximately from a few 10$^{-4}$ to 10$^{-2}$ for different hard energy scale $Q^2$ selections.

4 data tables

The mass distribution of D$^{0}$ decaying to K$^{-}$ and $\pi^{+}$ for $5 < p_{\mathrm{T}} < 8$ GeV and $0.0 < y < 1.0$ in 0nXn ultraperipheral PbPb collisions.

The d$^{2}\sigma$/dydp$_{\mathrm{T}}$ production cross section of D$^{0}$ for $2 < p_{\mathrm{T}} < 5$ GeV in ultraperipheral PbPb collisions.

The d$^{2}\sigma$/dydp$_{\mathrm{T}}$ production cross section of D$^{0}$ for $5 < p_{\mathrm{T}} < 8$ GeV in ultraperipheral PbPb collisions.

More…

Low-mass vector-meson production at forward rapidity in $p$$+$$p$ and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$~GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Adare, A. ; et al.
2025.
Inspire Record 2942761 DOI 10.17182/hepdata.165500

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low-mass vector-meson ($ω+ρ$ and $ϕ$) production through the dimuon decay channel at forward rapidity $(1.2<|\mbox{y}|<2.2)$ in $p$$+$$p$ and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$~GeV. The low-mass vector-meson yield and nuclear-modification factor were measured as a function of the average number of participating nucleons, $\langle N_{\rm part}\rangle$, and the transverse momentum $p_T$. These results were compared with those obtained via the kaon decay channel in a similar $p_T$ range at midrapidity. The nuclear-modification factors in both rapidity regions are consistent within the uncertainties. A comparison of the $ω+ρ$ and $J/ψ$ mesons reveals that the light and heavy flavors are consistently suppressed across both $p_T$ and ${\langle}N_{\rm part}\rangle$. In contrast, the $ϕ$ meson displays a nuclear-modification factor consistent with unity, suggesting strangeness enhancement in the medium formed.

6 data tables

The differential cross sections of $\omega+\rho$ mesons as a function of $p_T$ in $p+p$ collisions. The systematic uncertainties of type-A (uncorrelated) are combined with statistical uncertainties in quadrature and are labeled as stat. Type-B (correlated) systematic uncertainties are listed as sys.

The differential cross sections of $\phi$ meson as a function of $p_T$ in $p+p$ collisions. The systematic uncertainties of type-A (uncorrelated) are combined with statistical uncertainties in quadrature and are labeled as stat. Type-B (correlated) systematic uncertainties are listed as sys.

The invariant yields of $\phi$ and $\omega+\rho$ mesons as a function of $p_T$ in Au+Au collisions. The systematic uncertainties of type-A (uncorrelated) are combined with statistical uncertainties in quadrature and are labeled as stat. Type-B (correlated) systematic uncertainties are listed as sys.

More…

Measurement of inclusive jet cross section and substructure in $p$+$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
Phys.Rev.D 111 (2025) 112008, 2025.
Inspire Record 2820229 DOI 10.17182/hepdata.158374

The jet cross-section and jet-substructure observables in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV were measured by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC). Jets are reconstructed from charged-particle tracks and electromagnetic-calorimeter clusters using the anti-$k_{t}$ algorithm with a jet radius $R=0.3$ for jets with transverse momentum within $8.0<p_T<40.0$ GeV/$c$ and pseudorapidity $|η|<0.15$. Measurements include the jet cross section, as well as distributions of SoftDrop-groomed momentum fraction ($z_g$), charged-particle transverse momentum with respect to jet axis ($j_T$), and radial distributions of charged particles within jets ($r$). Also meaureed was the distribution of $ξ=-ln(z)$, where $z$ is the fraction of the jet momentum carried by the charged particle. The measurements are compared to theoretical next-to and next-to-next-to-leading-order calculatios, PYTHIA event generator, and to other existing experimental results. Indicated from these meaurements is a lower particle multiplicity in jets at RHIC energies when compared to models. Also noted are implications for future jet measurements with sPHENIX at RHIC as well as at the future Electron-Ion Collider.

8 data tables

The jet differential cross section as a function of jet $p_T$. Statistical uncertainties are typically smaller than the data points while systematic uncertainties are shown with boxes. An overall normalization systematic of 7% is not included in the point-by-point systematic uncertainties.

Distribution of the SoftDrop groomed momentum fraction $z_g$ for different jet $p_T$ bins. Standard SoftDrop parameters were used ($z_{cut}<0.1$ and $\beta=0$).

$\xi$ distributions for different jet $p_T$ bins.

More…

Measurement of the Total Compton Scattering Cross Section between 6.5 and 11 GeV

The GlueX collaboration Afzal, F. ; Akondi, C.S. ; Albrecht, M. ; et al.
Phys.Lett.B 870 (2025) 139914, 2025.
Inspire Record 2920657 DOI 10.17182/hepdata.165514

The total cross section for Compton scattering off atomic electrons, $γ+e\rightarrowγ'+e'$, was measured using photons with energies between 6.5 and 11.1 GeV incident on a $^9$Be target as part of the PrimEx-eta experiment in Hall D at Jefferson Lab. This is the first measurement of this fundamental QED process within this energy range. The total uncertainties of the cross section, combining the statistical and systematic components in quadrature, averaged to 3.4% across all energy bins. This not only demonstrates the capability of this experimental setup to perform precision cross-section measurements at forward angles but also allows us to compare with state-of-the-art QED calculations.

1 data table

$\gamma +e^- \rightarrow \gamma + e^-$ total cross section in bins of photon beam energy. The first uncertainties are statistical, and the second are systematic.


Measurement of charged hadron multiplicity in Au+Au collisions at $\sqrt{\text{s}_{\text{NN}}} = 200$ GeV with the sPHENIX detector

The sPHENIX collaboration Abdulhamid, M.I. ; Acharya, U. ; Adams, E.R. ; et al.
2025.
Inspire Record 2907537 DOI 10.17182/hepdata.159879

The pseudorapidity distribution of charged hadrons produced in Au+Au collisions at a center-of-mass energy of $\sqrt{s_\mathrm{NN}} = 200$ GeV is measured using data collected by the sPHENIX detector. Charged hadron yields are extracted by counting cluster pairs in the inner and outer layers of the Intermediate Silicon Tracker, with corrections applied for detector acceptance, reconstruction efficiency, combinatorial pairs, and contributions from secondary decays. The measured distributions cover $|\eta| < 1.1$ across various centralities, and the average pseudorapidity density of charged hadrons at mid-rapidity is compared to predictions from Monte Carlo heavy-ion event generators. This result, featuring full azimuthal coverage at mid-rapidity, is consistent with previous experimental measurements at the Relativistic Heavy Ion Collider, thereby supporting the broader sPHENIX physics program.

2 data tables

Nch, Npart, and Nch/(Npart/2) values in Table 4, presented in Figure 6.

Nch as a function of $\eta$, presented in Figure 5.


Measurement of the transverse energy density in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with the sPHENIX detector

The sPHENIX collaboration Abdulhamid, M.I. ; Acharya, U. ; Adams, E.R. ; et al.
Phys.Rev.C 112 (2025) 024908, 2025.
Inspire Record 2907573 DOI 10.17182/hepdata.159889

This paper reports measurements of the transverse energy per unit pseudorapidity ($dE_{T}/dη$) produced in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, performed with the sPHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The results cover the pseudorapidity range $\left|η\right| < 1.1$ and constitute the first such measurement performed using a hadronic calorimeter at RHIC. Measurements of $dE_{T}/dη$ are presented for a range of centrality intervals and the average $dE_{T}/dη$ as a function of the number of participating nucleons, $N_{\mathrm{part}}$, is compared to a variety of Monte Carlo heavy-ion event generators. The results are in agreement with previous measurements at RHIC, and feature an improved granularity in $η$ and improved precision in low-$N_{\mathrm{part}}$ events.

10 data tables

An example of a reconstructed EMCal di-cluster invariant mass distribution, similar to those used for in situ EMCal tower calibrations. The distributions are made from EMCal cluster pairs using Run 2024 Au+Au data. The prominent peak arises from $\pi^{0}\to\gamma\gamma$ decays.

An example of a reconstructed EMCal di-cluster invariant mass distribution, similar to those used for in situ EMCal tower calibrations. The distributions are made from EMCal cluster pairs using a GEANT-4 simulation of HIJING events. The prominent peak arises from $\pi^{0}\to\gamma\gamma$ decays.

An example of the measured energy distribution in a single OHCal tower, showing the MIP distribution from cosmic-ray data from the detector.

More…

Observation of the Onset of Constituent Quark Number Scaling in Heavy-Ion Collisions at RHIC

The STAR collaboration Aboona, B.E. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.Lett. 135 (2025) 072301, 2025.
Inspire Record 2907591 DOI 10.17182/hepdata.159489

Partonic collectivity is one of the necessary signatures for the formation of quark-gluon plasma in high-energy nuclear collisions. Number of constituent quarks (NCQ) scaling has been observed for hadron elliptic flow $v_2$ in top energy nuclear collisions at the Relativistic Heavy Ion Collider and the LHC, and this has been theoretically suggested as strong evidence for partonic collectivity. In this Letter, a systematic analysis of $v_2$ of $π^{\pm}$, $K^{\pm}$, $K^{0}_{S}$, $p$, and $Λ$ in Au+Au collisions at ${\sqrt{s_{_{\rm{NN}}}}}$ = 3.2, 3.5, 3.9, and 4.5 GeV, with the STAR experiment at the Relativistic Heavy Ion Collider, is presented. NCQ scaling is markedly violated at 3.2 GeV, consistent with a hadronic-interaction dominated equation of state. However, as the collision energy increases, a gradual evolution to NCQ scaling is observed. This beam-energy dependence of $v_2$ for all hadrons studied provides evidence for the onset of dominant partonic interactions by ${\sqrt{s_{_{\rm{NN}}}}}$ = 4.5 GeV.

72 data tables

$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3 GeV

$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3.2 GeV

$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3.5 GeV

More…

Measurement of Spin-Density Matrix Elements in $ϕ(1020)\to K_S^0K_L^0$ Photoproduction with a Linearly Polarized Photon Beam at $E_γ=8.2-8.8$ GeV

The GlueX collaboration Afzal, F. ; Akondi, C.S. ; Albrecht, M. ; et al.
Phys.Rev.C 112 (2025) 025203, 2025.
Inspire Record 2907183 DOI 10.17182/hepdata.160000

We measure the spin-density matrix elements (SDMEs) for the photoproduction of $ϕ(1020)$ off of the proton in its decay to $K_S^0K_L^0$, using 105 pb$^{-1}$ of data collected with a linearly polarized photon beam using the GlueX experiment. The SDMEs are measured in nine bins of the squared four-momentum transfer $t$ in the range $-t=0.15-1.0$ GeV$^2$, providing the first measurement of their $t$-dependence for photon beam energies $E_γ= 8.2-8.8$ GeV. We confirm the dominance of Pomeron exchange in this region, and put constraints on the contribution of other Regge exchanges. We also find that helicity amplitudes where the helicity of the photon and the $ϕ(1020)$ differ by two units are negligible.

1 data table

Spin-density matrix elements of $\phi(1020)$ mesons produced by a linearly polarized photon beam in the helicity system. For each bin of $-t$, the limits of the bin range are given, along with the average $-\bar t$ and root-mean-square deviation $-t_\text{RMS}$ of all events that fall within the bin.