We have measured the probability, n(g->cc~), of a gluon splitting into a charm-quark pair using 1.7 million hadronic Z decays collected by the L3 detector. Two independent methods have been applied to events with a three-jet topology. One method relies on tagging charmed hadrons by identifying a lepton in the lowest energy jet. The other method uses a neural network based on global event shape parameters. Combining both methods, we measure n(g->cc~)= [2.45 +/- 0.29 +/- 0.53]%.
No description provided.
We have searched for second generation leptoquark (LQ) pairs in the \mu\mu+jets channel using 94+-5 pb^{-1} of pbar-p collider data collected by the D0 experiment at the Fermilab Tevatron during 1993-1996. No evidence for a signal is observed. These results are combined with those from the \mu\nu+jets and \nu\nu+jets channels to obtain 95% confidence level (C.L.) upper limits on the LQ pair production cross section as a function of mass and $beta, the branching fraction of a LQ decay into a charged lepton and a quark. Lower limits of 200(180) GeV/c^2 for \beta=1(1/2) are set at the 95% C.L. on the mass of scalar LQ. Mass limits are also set on vector leptoquarks as a function of \beta.
No description provided.
We report on the production of J/psi mesons in 530 and 800 GeV/c proton - Be collisions in the Feynman-x range 0.0 < xf < 0.6. The J/psi mesons were detected via decays into opposite sign muon pairs. Differential distributions for J/psi production have been measured as functions of xf, pT^2, and cosine of the Gottfried-Jackson decay angle. These distributions are compared with results on J/psi production obtained in 515 GeV/c pion - Be collisions, measured by the same experiment, as well as with results from other experiments using incident protons.
Differential XL distribution for J/PSI production in 530 GeV pBe collisions. Errors are combined statistics and systematics.
Differential PT**2 distribution for J/PSI production in 530 GeV pBe collisions. Errors are combined statistics and systematics.
Differential COS(THETA) distribution for J/PSI production in 530 GeV pBe collisions. Errors are combined statistics and systematics.
First inclusive measurements of isolated prompt photons in photoproduction at the HERA ep collider have been made with the ZEUS detector, using an integrated luminosity of 38.4 pb$^{-1}$. Cross sections are given as a function of the pseudorapidity and the transverse energy ($\eta^\gamma$, \eTg) of the photon, for $\eTg > $ 5 GeV in the $\gamma p$ centre-of-mass energy range 134-285 GeV. Comparisons are made with predictions from Monte Carlo models having leading-logarithm parton showers, and with next-to-leading-order QCD calculations, using currently available parameterisations of the photon structure. For forward $\eta^\gamma$ (proton direction) good agreement is found, but in the rear direction all predictions fall below the data.
The differential cross section for inclusive photoproduction of isolated photons.
Differential cross sections as a function pseudorapidity for the inclusive photoproduction of isolated photons with transverse energy from 5 to 10 GeV.
Elastic and proton-dissociative photoproduction of $\rho^0$, $\phi$ and $J/\psi$ vector mesons ($\gamma p\to Vp$, $\gamma p\to VN$, respectively) have been measured in e^+p interactions at HERA up to -t=3 GeV$^2$, where t is the four-momentum transfer squared at the photon-vector meson vertex. The analysis is based on a data sample in which photoproduction reactions were tagged by detection of the scattered positron in a special-purpose calorimeter. This limits the photon virtuality, Q^2, to values less than 0.01 GeV$^2$, and selects a $\gamma p$ average center-of-mass energy of <W> = 94 GeV. Results for the differential cross sections, d$\sigma$/d$t$, for $\rho^0$, $\phi$ and $J/\psi$ mesons are presented and compared to the results of recent QCD calculations. Results are also presented for the t-dependence of the pion-pair invariant-mass distribution in the $\rho^0$ mass region and of the spin-density matrix elements determined from the decay-angle distributions. The Pomeron trajectory has been derived from measurements of the W dependence of the elastic differential cross sections d$\sigma$/d$t$ for both $\rho^0$ and $\phi$ mesons.
Differential cross section for proton-dissociative RHO0 photoproduction.
Differential cross section for elastic RHO0 photoproduction.
The ratio of the elastic to proton-dissociative cross sections for RHO0 photoproduction.
The forward-jet cross section in deep inelastic ep scattering has been measured using the ZEUS detector at HERA with an integrated luminosity of 6.36 pb^-1. The jet cross section is presented as a function of jet transverse energy squared, E(T,jet)^2, and Q^2 in the kinematic ranges 10^-2<E(T,jet)^2/Q^2<10^2 and 2.5 10^-4<x<8.0 10^-2. Since the perturbative QCD predictions for this cross section are sensitive to the treatment of the log(E_T/Q)^2 terms, this measurement provides an important test. The measured cross section is compared to the predictions of a next-to-leading order pQCD calculation as well as to various leading-order Monte Carlo models. Whereas the predictions of all models agree with the measured cross section in the region of small E(T,Jet)^2/Q^2, only one model, which includes a resolved photon component, describes the data over the whole kinematic range.
Forward jet cross section as a function of ET**2/Q**2. The second DSYS error is the uncertainty in the energy scale of the calorimeter.
Measured forward-jet x distribution.
We report on measurements of the triple-gauge-boson couplings of the W boson in e+e- collisions with the L3 detector at LEP. W-pair, single-W and single-photon events are analysed in a data sample corresponding to a total luminosity of 76.7 pb^{-1} collected at centre-of-mass energies between 161 GeV and 183 GeV. CP-conserving as well as both C- and P-conserving triple-gauge-boson couplings are determined. The results, in good agreement with the Standard-Model expectations, confirm the existence of the self coupling among the electroweak gauge bosons and constrain its structure.
The errors are statistical. Two-parameter fit.
The errors are statistical. Two-parameter fit.
The errors are statistical. Two-parameter fit.
The first observation of open b production in ep collisions is reported. An event sample containing muons and jets has been selected which is enriched in semileptonic b quark decays. The visible cross section \sigma(ep -> b \bar{b}X -> \mu X') for Q^2 < 1 GeV^2, 0.1 < y < 0.8 is measured to be 0.176+-0.016(stat.)+0.026-0.017(syst.) nb for the muons to be detected in the range 35 deg < \theta^\mu < 130 deg and \pt^\mu > 2.0 GeV in the laboratory frame. The expected visible cross section based on a NLO QCD calculation is 0.104+-0.017 nb. The cross sections for electroproduction with Q^2<1 GeV^2 and photoproduction are derived from the data and found to be \sigma(ep-> e b\bar{b}X) = 7.1+-0.6(stat.)+1.5-1.3(syst.) nb and \sigma(\gamma p-> b\bar{b} X) = 111+-10(stat.)+23-20(syst.) at an average <W_{\gamma p}> \sim 180 GeV, respectively.
The visible BQ BQBAR --> MUON X cross section in the stated kinematic range.
The total electroproduction and photoproduction cross sections extrapolated to the full phase space.
Single and multi-photon events with missing energy are analysed using data collected with the L3 detector at LEP at a centre-of-mass energy of 189 GeV, for a total of 176 pb^{-1} of integrated luminosity. The cross section of the process e+e- -> nu nu gamma (gamma) is measured and the number of light neutrino flavours is determined to be N_\nu = 3.011 +/- 0.077 including lower energy data. Upper limits on cross sections of supersymmetric processes are set and interpretations in supersymmetric models provide improved limits on the masses of the lightest neutralino and the gravitino. Graviton-photon production in low scale gravity models with extra dimensions is searched for and limits on the energy scale of the model are set exceeding 1 TeV for two extra dimensions.
No description provided.
A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.
Measured cross section within the kinematic and geometric cuts. THETA(C=GAMMA) is the angle between the photon and the closest jet, and THETA(C=LEPTON) is the angle between the photon and the lepton.
95 PCT confidence limits on possible anomalous contributions.