This paper presents the final results on charged-current neutrino and antineutrino interactions with nuclei from experiment E-310 at Fermi National Accelerator Laboratory. The data sample, consisting of 21 578 neutrino-induced and 7358 antineutrino-induced events within the fiducial region in the energy range 20<E<325 GeV, is exhibited first to demonstrate the basic properties and kinematic regions represented. The dependence of the nucleon structure functions on the dimensionless variable x and on neutrino energy is then described. Lastly, the variations of the structure functions with x and Q2 are presented. The emphasis throughout has been to understand the effects on the final results of uncertainties in the systematic corrections required by the data. Comparisons with the results of other neutrino experiments are made.
VALUES OF Q2 ARE .36,1.07,2.13,3.56,4.98,6.40,7.82,9.24.
VALUES OF Q2 ARE .70,2.11,4.22,7.04,9.86,12.67,15.49,18.30.
VALUES OF Q2 ARE 1.16,3.48,6.97,11.61,16.26,20.90,25.55,30.19.
Inclusive dimuon production by 39.5 GeV/ c π ± , K ± , p and p¯ is described for masses greater than 2.0 GeV/ c 2 . The π − , π + and (π − − π + ) continuum cross-sections exceed the naive Drell-Yan predictions by a factor ∼2.4. The pion valence structure function has been measured and is consistent with a corresponding measurement at 200 GeV/ c .
No description provided.
We have studied transverse momenta of charged hadrons in the current fragmentation region of charged current antineutrino- nucleon interactions observed in the Fermilab 15 ft bubble chamber. The measured momentum squared transverse to the v μ + plane (p out 2 ) of the negative hadrons varies as a function of Q 2 , W 2 and x as expected from t he leading order perturbative QCD calculations. Positively charged hadrons show a different transverse momentum behaviour as a function of Q 2 .
No description provided.
No description provided.
No description provided.
We have performed in the NA3 experiment the study of high mass dimuon production by a hadronic unseparated beam on hydrogen and platinum targets. The comparison of the production cross‐section for proton and antiproton together with the differential cross‐section dσ/dx allows us to compare the data with a production mechanism involving quark‐antiquark and gluon‐gluon interactions. The cosΘ* distribution of the same J/ψ data have also been analysed and results will be presented. Finally we have observed T production from 150 GeV/c incident pions.
No description provided.
No description provided.
No description provided.
The reaction π − p↑→ π − π + π − p has been measured at 17 GeV/ c using a polarized target. The data sample contains about 60 000 interactions on polarized protons. The nucleon polarization as a function of momentum transfer is very similar to elastic π − p scattering and is nearly independent of the π mass, except for a possible structure around 1.2 GeV.
No description provided.
The transverse momenta of charged hadrons produced in high energy muon-proton scattering have been studied. The average squared transverse momentum 〈 p 2 ⊥ 〉 shows a strong dependence on z = E h / v characteristic of intrinsic momentum effects and a significant rise as a function of s = W 2 . The W 2 , q 2 , x and z dependences of the data are compared with the predictions of a perturbative QCD model.
No description provided.
No description provided.
No description provided.
Additional systematic uncertainty 25% not included.
Measurements of the charged multiplicities for hadron production in e + e − annihilation in the center of mass energy range 9–32 GeV have been made. The average charged multiplicity has an energy dependence much stronger than ln s and similar to that reported for pp collisions. Quantitative differences are observed in the magnitude of both the average multiplicity 〈 n ch 〉 and the dispersion D ch for e + e − and pp interactions at the same center of mass energy. 〈 n ch 〉 and the ratio 〈 n ch / D ch in e + e − annihilations are significantly larger than in pp collisions and are found to be in overall agreement with QCD predictions. KNO scaling is seen to be satisfied.
THE FINAL TABLE ENTRY COMBINES THE DATA FROM THE THREE HIGHEST ENERGY BINS.
By combining results from the MARK-J at PETRA on Bhabha scattering, μ + μ - and τ + τ - production with recent world data from neutrino-electron scattering experiments, we determine unique values for the leptonic weak neutral current coupling constants g V and g A in the framework of electroweak models containing a single Z 0 . In contrast to previous analyses, we only use data from purely leptonic interactions, and therefore avoid the inherent uncertainties resulting from the use of hadronic targets. From the MARK-J data alone in the context of the standard SU(2) ⊗ U (1) model of Glashow, Weinberg and Salam, we find sin 2 θ W =0.24±0.11.
No description provided.
No description provided.
No description provided.
The production of J/ψ by π ± , K ± , p and p¯ incident on tungsten at 39.5GeV/ c beam momentum has been studied. Production of ψ' (3700) by π ± was also observed. The J/ψ relative particle/a ntiparticle cross-sections for x F 0 are σ(σ + ) σ(σ − =( are σ(σ ± )/σ(σ − )=(1.01±0.06), σ(K + )/σ(K) − )=(0.29±0.07) and σ(p) /σ(p¯)= (0.1+-0.03). The small p/p¯ and K + /K − cross-section ratios indicate the importance of valence quarks in the production process.
No description provided.
No description provided.