The production of the octet and decuplet baryons Λ, Ξ − , Σ (1385) ± , Ξ(1530) 0 and Ω − and the corresponding antibaryons has been measured in a sample of 485 000 hadronic Z 0 decays. Results on differential and integrated cross sections are presented. The differential cross section of Λ baryons is found to be softer than the one predicted by the Jetset and Herwig Monte Carlo generators. The measured decuplet yields are found to disagree with the simple diquark picture where only one tuning parameter for spin 1 diquarks is used. Comparisons of the momentum spectra for Λ and Ξ − with the predictions of an analytical QCD formula are also presented.
No description provided.
No description provided.
No description provided.
The multiplicity distributions of charged particles in full phase space and in restricted rapidity intervals for events with a fixed number of jets measured by the DELPHI detector are presented. The data are well reproduced by the Lund Parton Shower model and can also be well described by fitted negative binomial distributions. The properties of these distributions in terms of the clan model are discussed. In symmetric 3-jet events the candidate gluon jet is found not to be significantly different in average multiplicity than the mean of the other two jets, thus supporting previous results of the HRS and OPAL experiments. Similar results hold for events generated according to the LUND PS and to the HERWIG models, when the jets are defined by the JADE jet finding algorithm. The method seems to be insensitive for measuring the color charge ratio between gluons and quarks.
Corrected charged particle multiplicity for jet resolution parameter YCUT = 0.01.
Corrected charged particle multiplicity for jet resolution parameter YCUT = 0.02.
Corrected charged particle multiplicity for jet resolution parameter YCUT = 0.04.
The energy and centrality dependence of local particle pseudorapidity densities as well as validity of various parametrizations of the distributions are examined. The dispersion, σ, of the rapidity density distribution of produced particles varies slowly with centrality and is 0.80, 0.98, 1.21 and 1.41 for central interactions at 3.7, 14.6, 60 and 200A GeV incident energy, respectively, σ is found to be independent of the size of the interacting system at fixed energy. A novel way of representing the window dependence of the multiplicity as normalized variance versus inverse average multiplicity is outlined.
No description provided.
NUCLEUS IS AGBR, CENTRAL EVENTS.
No description provided.
An analysis of the production of strange particles from the decays of the Z 0 boson into multihadronic final states is presented. The analysis is based on about 90 000 selected hadronic Z 0 decays collected by the DELPHI detector at LEP in 1990. K s 0 , K ∗± , Λ( Λ ) and Ξ − ( Ξ + ) have been identified by their characteristic decays. The measured production cross sections are compared with predictions of the Lund Monte Carlo tuned to data at PEP/PETRA energies.
No description provided.
No description provided.
No description provided.
We present an analysis of multiplicity distributions of charged particles produced inZ0 hadronic decays. The results are based on the analysis of 82941 events collected within 100 MeV of theZ0 peak energy with the OPAL detector at LEP. The charged particle multiplicity distribution, corrected for initial-state radiation and for detector acceptance and resolution, was found to have a mean 〈nch〉=21.40±0.02(stat.)±0.43(syst.) and a dispersionD=6.49±0.02(stat.)±0.20(syst.). The shape is well described by the Lognormal and Gamma distributions. A negative binomial parameterisation was found to describe the shape of the multiplicity distribution less well. A comparison with results obtained at lower energies confirms the validity of KNO(-G) scaling up to LEP energies. A separate analysis of events with low sphericity, typically associated with two-jet final states, shows the presence of features expected for models based on a stochastic production mechanism for particles. In all cases, the features observed in the data are well described by the Lund parton shower model JETSET.
Distribution for whole event. The data at multiplicites 2 and 4 come from Monte Carlo data.
Distribution for single hemisphere.
Distribution for whole event. The data at multiplicites 2 and 4 come from Monte Carlo data.. Contributions from K0S and LAMBDA decays have been subtracted.
Quark and gluon jets in e + e − three-jet events at LEP are identified using lepton tagging of quark jets, through observation of semi-leptonic charm and bottom quark decays. Events with a symmetry under transposition of the energies and directions of a quark and gluon jet are selected: these quark and gluon jets have essentially the same energy and event environment and as a consequence their properties can be compared directly. The energy of the jets which are studied is about 24.5 GeV. In the cores of the jets, gluon jets are found to yield a softer particle energy spectrum than quark jets. Gluon jets are observed to be broader than quark jets, as seen from the shape of their particle momentum spectra both in and out of the three-jet event plane. The greater width of gluon jets relative to quark jets is also visible from the shapes of their multiplicity distributions. Little difference is observed, however, between the mean value of particle multiplicity for the two jet types.
QUARK means QUARK or QUARKBAR.
The multiplicity distributions of charged particles in restricted rapidity intervals inZ0 hadronic decays measured by the DELPHI detector are presented. The data reveal a shoulder structure, best visible for intervals of intermediate size, i.e. for rapidity limits around ±1.5. The whole set of distributions including the shoulder structure is reproduced by the Lund Parton Shower model. The structure is found to be due to important contributions from 3-and 4-jet events with a hard gluon jet. A different model, based on the concept of independently produced groups of particles, “clans”, fluctuating both in number per event and particle content per clan, has also been used to analyse the present data. The results show that for each interval of rapidity the average number of clans per event is approximately the same as at lower energies.
Data for both hemispheres.
Data for both hemispheres.
Data for both hemispheres.
We present a study of inclusive π0 and ŋ production ine+e− annihilation at
Particle multiplicities in the continuum.
Particle multiplicities in the UPSILON (1S).
Inclusive pi0 spectra in the continuum.
We present measurements of global event shape distributions in the hadronic decays of theZ0. The data sample, corresponding to an integrated luminosity of about 1.3 pb−1, was collected with the OPAL detector at LEP. Most of the experimental distributions we present are unfolded for the finite acceptance and resolution of the OPAL detector. Through comparison with our unfolded data, we tune the parameter values of several Monte Carlo computer programs which simulate perturbative QCD and the hadronization of partons. Jetset version 7.2, Herwig version 3.4 and Ariadne version 3.1 all provide good descriptions of the experimental distributions. They in addition describe lower energy data with the parameter values adjusted at theZ0 energy. A complete second order matrix element Monte Carlo program with a modified perturbation scale is also compared to our 91 GeV data and its parameter values are adjusted. We obtained an unfolded value for the mean charged multiplicity of 21.28±0.04±0.84, where the first error is statistical and the second is systematic.
Corrected Thrust distribution.
Corrected Major distribution.
Corrected Minor distribution.
Hadronic decays of Z 0 bosons are studied in the Delphi detector. Global event variables and singel particles inclusive distributions are compared with QCD-based predictions. The mean charged multiplicity is found to be 20.6±1.0 (stat+syst). The mean values of the sphericity, aplanarity, thrust, minor value, p in T and p out T are compared with values found at lower energy e + e − colliders.
Corrected Sphericity distribution. Statistical errors only.
Corrected Aplanarity distribution. Statistical errors only.
Corrected Q3-Q2 distribution. Statistical errors only.