Measurement of Jet Production Cross Sections in Deep-inelastic $ep$ Scattering at HERA

The H1 collaboration Collaboration, H1 ; Andreev, Vladimir ; Baghdasaryan, Artem ; et al.
Eur.Phys.J.C 77 (2017) 215, 2017.
Inspire Record 1496981 DOI 10.17182/hepdata.86390

A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities $5.5<Q^2<80\,{\rm GeV}^2$ and inelasticities $0.2<y<0.6$ is presented, using data taken with the H1 detector at HERA, corresponding to an integrated luminosity of $290\,{\rm pb}^{-1}$. Double-differential inclusive jet, dijet and trijet cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of $Q^2$. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective $Q^2$-interval are also determined. Previous results of inclusive jet cross sections in the range $150<Q^2<15\,000\,{\rm GeV}^2$ are extended to low transverse jet momenta $5<P_{T}^{\rm jet}<7\,{\rm GeV}$. The data are compared to predictions from perturbative QCD in next-to-leading order in the strong coupling, in approximate next-to-next-to-leading order and in full next-to-next-to-leading order. Using also the recently published H1 jet data at high values of $Q^2$, the strong coupling constant $\alpha_s(M_Z)$ is determined in next-to-leading order.

55 data tables

Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 5.5-8.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.

Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 8.0-11.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.

Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 11.0-16.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.

More…

Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 75 (2015) 186, 2015.
Inspire Record 1332746 DOI 10.17182/hepdata.70049

This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 inverse femtobarns collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to the strong coupling constant alpha[S] is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of alpha[S](MZ) = 0.1171 +/- 0.0013 (exp) +0.0073/-0.0047 (theo).

6 data tables

Measured 3-jet mass cross section with uncertainties.

Overview of the NP correction factors and their uncertainties in the inner and outer rapidity region.

Determinations of $\alpha_s(M_Z)$ in the considered $m_3$ ranges.

More…

Measurement of the tau branching fractions into leptons

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 507 (2001) 47-60, 2001.
Inspire Record 552995 DOI 10.17182/hepdata.54875

Using data collected with the L3 detector near the Z resonance, corresponding to an integrated luminosity of 150pb-1, the branching fractions of the tau lepton into electron and muon are measured to be B(tau->e nu nu) = (17.806 +- 0.104 (stat.) +- 0.076 (syst.)) %, B(tau->mu nu nu) = (17.342 +- 0.110 (stat.) +- 0.067 (syst.)) %. From these results the ratio of the charged current coupling constants of the muon and the electron is determined to be g_mu/g_e = 1.0007 +- 0.0051. Assuming electron-muon universality, the Fermi constant is measured in tau lepton decays as G_F = (1.1616 +- 0.0058) 10^{-5} GeV^{-2}. Furthermore, the coupling constant of the strong interaction at the tau mass scale is obtained as alpha_s(m_tau^2) = 0.322 +- 0.009 (exp.) +- 0.015 (theory).

1 data table

First DSYS error is experimental, the second is from theory.


Consistent measurements of alpha(s) from precise oriented event shape distributions.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 14 (2000) 557-584, 2000.
Inspire Record 522656 DOI 10.17182/hepdata.13245

An updated analysis using about 1.5 million events recorded at $\sqrt{s} = M_Z$ with the DELPHI detector in 1994 is presented. Eighteen infrared and collinear safe event shape observables are measured as a function of the polar angle of the thrust axis. The data are compared to theoretical calculations in ${\cal O} (\alpha_s^2)$ including the event orientation. A combined fit of $\alpha_s$ and of the renormalization scale $x_{\mu}$ in $\cal O(\alpha_s^2$) yields an excellent description of the high statistics data. The weighted average from 18 observables including quark mass effects and correlations is $\alpha_s(M_Z^2) = 0.1174 \pm 0.0026$. The final result, derived from the jet cone energy fraction, the observable with the smallest theoretical and experimental uncertainty, is $\alpha_s(M_Z^2) = 0.1180 \pm 0.0006 (exp.) \pm 0.0013 (hadr.) \pm 0.0008 (scale) \pm 0.0007 (mass)$. Further studies include an $\alpha_s$ determination using theoretical predictions in the next-to-leading log approximation (NLLA), matched NLLA and $\cal O(\alpha_s^2$) predictions as well as theoretically motivated optimized scale setting methods. The influence of higher order contributions was also investigated by using the method of Pad\'{e} approximants. Average $\alpha_s$ values derived from the different approaches are in good agreement.

33 data tables

The weighted value of ALPHA-S from all the measured observables using experimentally optimized renormalization scale values and corrected for the b-mass toleading order.

The value of ALPHA-S derived from the JCEF and corrected for heavy quark mass effects. The quoted errors are respectively due to experimental error, hadronization, renormalization scale and heavy quark mass correction uncertainties.

Energy Energy Correlation EEC.

More…

QCD studies with e+ e- annihilation data at 172-GeV to 189-GeV.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 16 (2000) 185-210, 2000.
Inspire Record 513476 DOI 10.17182/hepdata.49000

We have studied hadronic events from e+e- annihilation data at centre-of-mass energies of sqrt{s}=172, 183 and 189 GeV. The total integrated luminosity of the three samples, measured with the OPAL detector, corresponds to 250 pb^-1. We present distributions of event shape variables, charged particle multiplicity and momentum, measured separately in the three data samples. From these we extract measurements of the strong coupling alpha_s, the mean charged particle multiplicity <nch> and the peak position xi_0 in the xi_p=ln(1/x_p) distribution. In general the data are described well by analytic QCD calculations and Monte Carlo models. Our measured values of alpha_s, <nch> and xi_0 are consistent with previous determinations at sqrt{s}=MZ.

20 data tables

Distribution of Thrust.

Distribution of Thrust Major.

Distribution of Thrust Minor.

More…

Test of the flavour independence of alpha(s) using next-to-leading order calculations for heavy quarks.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 11 (1999) 643-659, 1999.
Inspire Record 498246 DOI 10.17182/hepdata.49192

We present a test of the flavour independence of the strong coupling constant for charm and bottom quarks with respect to light (uds) quarks, based on a hadronic event sample obtained with the OPAL detector at LEP. Five observables related to global event shapes were used to measure alpha_s in three flavour tagged samples (uds, c and b). The event shape distributions were fitted by Order(alpha_s**2) calculations of jet production taking into account mass effects for the c and b quarks. We find: = 0.997 +- 0.038(stat.) +- 0.030(syst.) +- 0.012(theory) and = 0.993 +- 0.008(stat.) +- 0.006(syst.) +- 0.011(theory) for the ratios alpha_s(charm)/alpha_s(uds) and alpha_s(b)/alpha_s(uds) respectively.

1 data table

No description provided.


Energy dependence of event shapes and of alpha(s) at LEP-2.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 456 (1999) 322-340, 1999.
Inspire Record 499183 DOI 10.17182/hepdata.49129

Infrared and collinear safe event shape distributions and their mean values are determined using the data taken at five different centre of mass energies above M Z with the DELPHI detector at LEP. From the event shapes, the strong coupling α s is extracted in O ( α s 2 ), NLLA and a combined scheme using hadronisation corrections evaluated with fragmentation model generators as well as using an analytical power ansatz. Comparing these measurements to those obtained at M Z , the energy dependence (running) of α s is accessible. The logarithmic energy slope of the inverse strong coupling is measured to be d α −1 s d log (E cm ) =1.39±0.34( stat )±0.17( syst ) , in good agreement with the QCD expectation of 1.27.

47 data tables

Moments of the (1-THRUST) distributions at cm energies 133, 161, 172 and 183 GeV.

Moments of the Thrust Major distributions at cm energies 133, 161, 172 and 183 GeV.

Moments of the Thrust Minor distributions at cm energies 133, 161, 172 and 183 GeV.

More…

Study of hadronic events and measurements of alpha(s) between 30-GeV and 91-GeV.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 411 (1997) 339-353, 1997.
Inspire Record 445998 DOI 10.17182/hepdata.47465

We have studied the structure of hadronic events with a hard, isolated photon in the final state (e + e − → Z → hadrons + γ) in the 3.6 million hadronic events collected with the L3 detector at centre-of-mass energies around 91 GeV. The centre-of-mass energy of the hadronic system is in the range 30 GeV to 86 GeV. Event shape variables have been measured at these reduced centre-of-mass energies and have been compared with the predictions of different QCD Monte Carlo programs. The event shape variables and the energy dependence of their mean values are well reproduced by QCD models. We fit distributions of several global event shape variables to resummed O (α s 2 ) calculations to determine the strong coupling constant α s over a wide range of energies. We find that the strong coupling constant α s decreases with increasing energy, as expected from QCD.

6 data tables

No description provided.

No description provided.

No description provided.

More…

QCD studies and determination of alpha(s) in e+ e- collisions at s**(1/2) = 161-GeV and 172-GeV.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 404 (1997) 390-402, 1997.
Inspire Record 443563 DOI 10.17182/hepdata.47483

We present a study of the structure of hadronic events recorded by the L3 detector at LEP at the center of mass energies of 161 and 172 GeV. The data sample corresponds to an integrated luminosity of 21.25 pb −1 collected during the high energy runs of 1996. The distributions of event shape variables and the energy dependence of their mean values are well reproduced by QCD models. From a comparison of the data with resummed O ( α s 2 ) QCD calculations, we determine the strong coupling constant at the two energies. Combining this with our earlier measurements we find that the strong coupling constant decreases with increasing energy as expected in QCD.

8 data tables

No description provided.

Average jet multiplicity using JADE algorithm.

Average jet multiplicity using Durham algorithm.

More…

A measurement of alpha(s) from the scaling violation in e+ e- annihilation.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 398 (1997) 194-206, 1997.
Inspire Record 428178 DOI 10.17182/hepdata.47581

The hadronic fragmentation functions of the various quark flavours and of gluons are measured in a study of the inclusive hadron production from Z 0 decays with the DELPHI detector and are compared with the fragmentation functions measured elsewhere at energies between 14 GeV and 91 GeV. A large scaling violation is observed, which is used to extract the strong coupling constant from a fit using a numerical integration of the second order DGLAP evolution equations. The result is α s ( M Z ) = 0.124 −0.007 +0.006 (exp) ± 0.009(theory) where the first error represents the experimental uncertainty and the second error is due to the factorization and renormalization scale dependence.

2 data tables

SIG(Q=BQ, Q=CQ, Q=UDS) corresponds to BQ, CQ, and U,D,S quarks fragmentation into charged hadron.

alpha_s was evaluated from the scaling violation of the fragmentation func tions. The data from other experiments are used for the fitting procedure.