Transverse single-spin asymmetries of midrapidity $\pi^0$ and $\eta$ mesons in polarized $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.D 103 (2021) 052009, 2021.
Inspire Record 1833997 DOI 10.17182/hepdata.105043

We present a measurement of the transverse single-spin asymmetry for $\pi^0$ and $\eta$ mesons in $p^\uparrow$$+$$p$ collisions in the pseudorapidity range $|\eta|<0.35$ and at a center-of-mass energy of 200 GeV with the PHENIX detector at the Relativistic Heavy Ion Collider. In comparison with previous measurements in this kinematic region, these results have a factor of 3 smaller uncertainties. As hadrons, $\pi^0$ and $\eta$ mesons are sensitive to both initial- and final-state nonperturbative effects for a mix of parton flavors. Comparisons of the differences in their transverse single-spin asymmetries have the potential to disentangle the possible effects of strangeness, isospin, or mass. These results can constrain the twist-3 trigluon collinear correlation function as well as the gluon Sivers function.

2 data tables

Data from Figs. 2, 4, and 5 of the transverse single-spin asymmetry of neutral pions measured at $|\eta|<0.35$ in $p^\uparrow$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. An additional scale uncertainty of 3.4\% due to the polarization uncertainty is not shown. The total $\sigma_{\rm syst}$ in the lowest $p_T$ bin includes an additional systematic uncertainty of $1.06\times10^{-4}$ from bunch shuffling.

Data from Figs. 3 and 4 of the transverse single-spin asymmetry of eta mesons measured at $|\eta|<0.35$ in $p^\uparrow$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. An additional scale uncertainty of 3.4\% due to the polarization uncertainty is not shown. The total $\sigma_{\rm syst}$ in the lowest $p_T$ bin includes an additional systematic uncertainty of $6.20\times10^{-4}$ from bunch shuffling.


Measurement of beam asymmetry for $\pi^-\Delta^{++}$ photoproduction on the proton at $E_\gamma$=8.5 GeV

The GlueX collaboration Adhikari, S. ; Akondi, C.S. ; Ali, A. ; et al.
Phys.Rev.C 103 (2021) L022201, 2021.
Inspire Record 1817577 DOI 10.17182/hepdata.110112

We report a measurement of the $\pi^-$ photoproduction beam asymmetry for the reaction $\vec{\gamma} p \rightarrow \pi^- \Delta^{++}$ using data from the GlueX experiment in the photon beam energy range 8.2--8.8 GeV. The asymmetry $\Sigma$ is measured as a function of four-momentum transfer $t$ to the $\Delta^{++}$ and compared to phenomenological models. We find that $\Sigma$ varies as a function of $t$: negative at smaller values and positive at higher values of $|t|$. The reaction can be described theoretically by $t$-channel particle exchange requiring pseudoscalar, vector, and tensor intermediaries. In particular, this reaction requires charge exchange, allowing us to probe pion exchange and the significance of higher-order corrections to one-pion exchange at low momentum transfer. Constraining production mechanisms of conventional mesons may aid in the search for and study of unconventional mesons. This is the first measurement of the process at this energy.

1 data table

Beam asymmetry $\Sigma$ vs. $|t|$ compared to theoretical predictions. The uncertainty on $|t|$ is the rms of values in the $\Delta^{++}$ signal region. The uncertainties on $\Sigma$ are statistical and systematic (uncorrelated across t bins), respectively. There is an additional fully correlated systematic uncertainty of 1.5% on the magnitude of $\Sigma$.


Measurement of jet-medium interactions via direct photon-hadron correlations in Au$+$Au and $d$ $+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Acharya, U. ; Adare, A. ; Afanasiev, S. ; et al.
Phys.Rev.C 102 (2020) 054910, 2020.
Inspire Record 1798493 DOI 10.17182/hepdata.101752

We present direct photon-hadron correlations in 200 GeV/A Au+Au, d+Au, and p+p collisions, for direct photon pT from 5–12 GeV/c, collected by the PHENIX Collaboration in the years from 2006 to 2011. We observe no significant modification of jet fragmentation in d+Au collisions, indicating that cold nuclear matter effects are small or absent. Hadrons carrying a large fraction of the quark's momentum are suppressed in Au+Au compared to p+p and d+Au. As the momentum fraction decreases, the yield of hadrons in Au+Au increases to an excess over the yield in p+p collisions. The excess is at large angles and at low hadron pT and is most pronounced for hadrons associated with lower momentum direct photons. Comparison to theoretical calculations suggests that the hadron excess arises from medium response to energy deposited by jets.

14 data tables

Per-trigger yield of hadrons associated to direct photons in Au+Au collisions for direct photon $p_T$ 5-9 GeV/$c$, compared with p+p baseline, in various $\xi$ bins.

Per-trigger yield of hadrons associated to direct photons in d+Au collisions for direct photon $p_T$ 7-9 GeV/$c$, compared with p+p baseline, in various $\xi$ bins.

Integrated away-side $\gamma_{dir}$-h per-trigger yields of Au+Au, d+Au, and p+p, as a function of $\xi$.

More…

Measurement of the photon beam asymmetry in $\vec{\gamma} p\to K^+\Sigma^0$ at $E_{\gamma} = 8.5$ GeV

The GlueX collaboration Adhikari, S. ; Ali, A. ; Amaryan, M. ; et al.
Phys.Rev.C 101 (2020) 065206, 2020.
Inspire Record 1785913 DOI 10.17182/hepdata.110167

We report measurements of the photon beam asymmetry $\Sigma$ for the reaction $\vec{\gamma} p\to K^+\Sigma^0$(1193) using the GlueX spectrometer in Hall D at Jefferson Lab. Data were collected using a linearly polarized photon beam in the energy range of 8.2-8.8 GeV incident on a liquid hydrogen target. The beam asymmetry $\Sigma$ was measured as a function of the Mandelstam variable $t$, and a single value of $\Sigma$ was extracted for events produced in the $u$-channel. These are the first exclusive measurements of the photon beam asymmetry $\Sigma$ for the reaction in this energy range. For the $t$-channel, the measured beam asymmetry is close to unity over the $t$-range studied, $-t=(0.1-1.4)~$(GeV/$c$)$^{2}$, with an average value of $\Sigma = 1.00\pm 0.05$. This agrees with theoretical models that describe the reaction via the natural-parity exchange of the $K^{*}$(892) Regge trajectory. A value of $\Sigma = 0.41 \pm 0.09$ is obtained for the $u$-channel integrated up to $-u=2.0$~(GeV/$c$)$^{2}$.

2 data tables

Beam asymmetry $\Sigma$ for the low $-t$ region where the horizontal error bars indicate the rms widths of the $t$ bin. The uncertainties on $\Sigma$ are statistical and systematic (uncorrelated across t bins), respectively. There is an additional fully correlated systematic uncertainty of 2.1% on the magnitude of $\Sigma$.

Average beam asymmetry $\Sigma$ for the low $-u$ region where the uncertainty on $\Sigma$ is the statistical and systematic (uncorrelated across t bins), respectively. There is an additional fully correlated systematic uncertainty of 2.1% on the magnitude of $\Sigma$.


Measurement of $J/\psi$ at forward and backward rapidity in $p+p$, $p+A$l, $p+A$u, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200~{\rm GeV}$

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 102 (2020) 014902, 2020.
Inspire Record 1762446 DOI 10.17182/hepdata.98626

Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.

36 data tables

J/psi invariant yields in p+p collisions as a function of pT at forward and backward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi nuclear modification in p+Al, p+Au and 3He+Au collisions as a function of centrality and rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi nuclear modification in p+Al collisions as a function of centrality and rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

Beam Asymmetry $\mathbf{\Sigma}$ for the Photoproduction of $\mathbf{\eta}$ and $\mathbf{\eta^{\prime}}$ Mesons at $\mathbf{E_{\gamma}=8.8}$GeV

The GlueX collaboration Adhikari, S. ; Ali, A. ; Amaryan, M. ; et al.
Phys.Rev.C 100 (2019) 052201, 2019.
Inspire Record 1749712 DOI 10.17182/hepdata.110166

We report on the measurement of the beam asymmetry $\Sigma$ for the reactions $\vec{\gamma}p\rightarrow p\eta$ and $\vec{\gamma}p \rightarrow p\eta^{\prime}$ from the GlueX experiment, using an 8.2--8.8 GeV linearly polarized tagged photon beam incident on a liquid hydrogen target in Hall D at Jefferson Lab. These measurements are made as a function of momentum transfer $-t$, with significantly higher statistical precision than our earlier $\eta$ measurements, and are the first measurements of $\eta^{\prime}$ in this energy range. We compare the results to theoretical predictions based on $t$--channel quasi-particle exchange. We also compare the ratio of $\Sigma_{\eta}$ to $\Sigma_{\eta^{\prime}}$ to these models, as this ratio is predicted to be sensitive to the amount of $s\bar{s}$ exchange in the production. We find that photoproduction of both $\eta$ and $\eta^{\prime}$ is dominated by natural parity exchange with little dependence on $-t$.

3 data tables

Values and errors for the photon beam asymmetry $\Sigma_{\eta}$ for the reaction $\gamma p \rightarrow \eta p$ with $\eta\rightarrow\gamma\gamma$. For the binning in $t$, we report the range of the data, the event-weighted mean of all $t$ values, and the RMS of that distribution. For $\Sigma_{\eta}$, we report the value, statistical error, and systematic error. The total error is the sum of the previous two in quadrature. Not reported here is the $2.1\%$ relative uncertainty due to the determination of the polarization of the photon beam.

Values and errors for the photon beam asymmetry $\Sigma_{\eta\prime}$ for the reaction $\gamma p \rightarrow \eta^{\prime} p$ with $\eta^{\prime}\rightarrow \eta\pi^{+}\pi^{-}$ and the $\eta\rightarrow\gamma\gamma$. For the binning in $t$, we report the range of the data, the event-weighted mean of all $t$ values, and the RMS of that distribution. For $\Sigma_{\eta\prime}$, we report the value, statistical error, and systematic error. The total error is the sum of the previous two in quadrature. Not reported here is the $2.1\%$ relative uncertainty due to the determination of the polarization of the photon beam.

Values and errors for the ratio of photon beam asymmetries $\Sigma_{\eta\prime}/\Sigma_{\eta}$ for the reported reactions. To form the ratio, the $\eta$ analysis is done with the same binning in $t$ as the $\eta^\prime$ analysis, and for each bin we report the range of the data, the event-weighted mean of all $t$ values, and the RMS of that distribution. For $\Sigma_{\eta\prime}/\Sigma_{\eta}$, we report the value, statistical error, and systematic error. The total error is the sum of the previous two in quadrature.}


First Measurement of Near-Threshold J/ψ Exclusive Photoproduction off the Proton

The GlueX collaboration Ali, A. ; Amaryan, M. ; Anassontzis, E.G. ; et al.
Phys.Rev.Lett. 123 (2019) 072001, 2019.
Inspire Record 1736890 DOI 10.17182/hepdata.110173

We report on the measurement of the $\gamma p \rightarrow J/\psi p$ cross section from $E_\gamma = 11.8$ GeV down to the threshold at $8.2$ GeV using a tagged photon beam with the GlueX experiment. We find the total cross section falls toward the threshold less steeply than expected from two-gluon exchange models. The differential cross section $d\sigma /dt$ has an exponential slope of $1.67 \pm 0.39$ GeV$^{-2}$ at $10.7$ GeV average energy. The LHCb pentaquark candidates $P_c^+$ can be produced in the $s$-channel of this reaction. We see no evidence for them and set model-dependent upper limits on their branching fractions $\mathcal{B}(P_c^+ \rightarrow J/\psi p)$ and cross sections $\sigma(\gamma p \to P_c^+)\times\mathcal{B}(P_c^+ \to J/\psi p) $.

2 data tables

$\gamma p \rightarrow J/\psi p$ total cross-sections, statistical and systematic errors of the individual points in bins of beam energy. There is an additional fully correlated systematic uncertainty of 26.7% on the total cross section, not included here.

$\gamma p \rightarrow J/\psi p$ differential cross-sections, statistical and systematic errors of the individual points in bins of $-(t-t_{min})$. There is an additional fully correlated systematic uncertainty of 26.7% on the total cross section, not included here.


Creation of quark–gluon plasma droplets with three distinct geometries

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Nature Phys. 15 (2019) 214-220, 2019.
Inspire Record 1672133 DOI 10.17182/hepdata.99787

The experimental study of the collisions of heavy nuclei at relativistic energies has established the properties of the quark-gluon plasma (QGP), a state of hot, dense nuclear matter in which quarks and gluons are not bound into hadrons. In this state, matter behaves as a nearly inviscid fluid that efficiently translates initial spatial anisotropies into correlated momentum anisotropies among the produced particles, producing a common velocity field pattern known as collective flow. In recent years, comparable momentum anisotropies have been measured in small-system proton-proton ($p$$+$$p$) and proton-nucleus ($p$$+$$A$) collisions, despite expectations that the volume and lifetime of the medium produced would be too small to form a QGP. Here, we report on the observation of elliptic and triangular flow patterns of charged particles produced in proton-gold ($p$$+$Au), deuteron-gold ($d$$+$Au), and helium-gold ($^3$He$+$Au) collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_{NN}}}$~=~200 GeV. The unique combination of three distinct initial geometries and two flow patterns provides unprecedented model discrimination. Hydrodynamical models, which include the formation of a short-lived QGP droplet, provide a simultaneous description of these measurements.

16 data tables

$v_2$for 0-5% central p+Au collisions

$v_2$for 0-5% central d+Au collisions

$v_2$for 0-5% central $^3$He+Au collisions

More…

Charged-particle multiplicity distributions over a wide pseudorapidity range in proton-proton collisions at $\sqrt{s}=$ 0.9, 7, and 8 TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adolfsson, J. ; et al.
Eur.Phys.J.C 77 (2017) 852, 2017.
Inspire Record 1614477 DOI 10.17182/hepdata.78802

We present the charged-particle multiplicity distributions over a wide pseudorapidity range ($-3.4<\eta<5.0$) for pp collisions at $\sqrt{s}=$ 0.9, 7, and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach. The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators, as well as IP-Glasma calculations.

90 data tables

Multiplicity distribution in the pseudorapidity region -2.0 to 2.0 for NSD collisions at a centre-of-mass energy of 900 GeV.

Multiplicity distribution in the pseudorapidity region -2.4 to 2.4 for NSD collisions at a centre-of-mass energy of 900 GeV.

Multiplicity distribution in the pseudorapidity region -3.0 to 3.0 for NSD collisions at a centre-of-mass energy of 900 GeV.

More…

Prompt and nonprompt J/$\psi$ production and nuclear modification in $p$Pb collisions at $\sqrt{s_{\text{NN}}}= 8.16$ TeV

The LHCb collaboration Aaij, R. ; Adeva, B. ; Adinolfi, M. ; et al.
Phys.Lett.B 774 (2017) 159-178, 2017.
Inspire Record 1606329 DOI 10.17182/hepdata.79799

The production of J/$\psi$ mesons is studied in proton-lead collisions at the centre-of-mass energy per nucleon pair $\sqrt{s_{\text{NN}}}=8.16$ TeV with the LHCb detector at the LHC. The double differential cross-sections of prompt and nonprompt J/$\psi$ production are measured as functions of the J/$\psi$ transverse momentum and rapidity in the nucleon-nucleon centre-of-mass frame. Forward-to-backward ratios and nuclear modification factors are determined. The results are compared with theoretical calculations based on collinear factorisation using nuclear parton distribution functions, on the colour glass condensate or on coherent energy loss models.

16 data tables

The total integrated cross sections for prompt $J/\psi$ production, assuming no polarisation, and $J/\psi$ production from $b$-hadron decays in the rapidity range $1.5 < y^* < 4.0$ in the nucleon-nucleon centre-of-mass frame measured in the proton-lead beam configuration and transverse momentum 0-14 GeV/c. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty.

The total integrated cross sections for prompt $J/\psi$ production, assuming no polarisation, and $J/\psi$ production from $b$-hadron decays in the rapidity range $-5.0 < y^* < -2.5$ in the nucleon-nucleon centre-of-mass frame measured in the lead-proton beam configuration and transverse momentum 0-14 GeV/c. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty

The double-differential cross sections for prompt $J/\psi$ production, assuming no polarisation, as a function of transverse momentum for the rapidity range $1.5 < y^* < 4.0$ in the nucleon-nucleon centre-of-mass frame. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty.

More…