Measurement of Parity-Violating Asymmetry in Electron-Deuteron Inelastic Scattering

Wang, D. ; Pan, K. ; Subedi, R. ; et al.
Phys.Rev.C 91 (2015) 045506, 2015.
Inspire Record 1327482 DOI 10.17182/hepdata.72848

The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.

5 data tables

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab.

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES I settings.

Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES II settings.

More…

Precision measurement of the neutron spin asymmetry A(1)(n) and spin-flavor decomposition in the valence quark region.

The Jefferson Lab Hall A collaboration Zheng, X. ; Aniol, K. ; Armstrong, D.S. ; et al.
Phys.Rev.Lett. 92 (2004) 012004, 2004.
Inspire Record 625890 DOI 10.17182/hepdata.31679

We have measured the neutron spin asymmetry $A_1^n$ with high precision at three kinematics in the deep inelastic region at $x=0.33$, 0.47 and 0.60, and $Q^2=2.7$, 3.5 and 4.8 (GeV/c)$^2$, respectively. Our results unambiguously show, for the first time, that $A_1^n$ crosses zero around $x=0.47$ and becomes significantly positive at $x=0.60$. Combined with the world proton data, polarized quark distributions were extracted. Our results, in general, agree with relativistic constituent quark models and with perturbative quantum chromodynamics (pQCD) analyses based on the earlier data. However they deviate from pQCD predictions based on hadron helicity conservation.

1 data table

Measured values of A1 and G1/F1.


Determination of the deep inelastic contribution to the generalised Gerasimov-Drell-Hearn integral for the proton and neutron.

The HERMES collaboration Ackerstaff, K. ; Airapetian, A. ; Akopov, N. ; et al.
Phys.Lett.B 444 (1998) 531-538, 1998.
Inspire Record 476388 DOI 10.17182/hepdata.44128

The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2] for the proton and neutron have been determined from measurements of polarised cross section asymmetries in deep inelastic scattering of 27.5 GeV longitudinally polarised positrons from polarised 1H and 3He internal gas targets. The data were collected in the region above the nucleon resonances in the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the proton the contribution to the generalised Gerasimov-Drell-Hearn integral was found to be substantial and must be included for an accurate determination of the full integral. Furthermore the data are consistent with a QCD next-to-leading order fit based on previous deep inelastic scattering data. Therefore higher twist effects do not appear significant.

13 data tables

Gerasimov-Drell-Hearn sum rule for proton as a function of Q2.

Gerasimov-Drell-Hearn sum rule for neutron as a function of Q2 (integral spans from Q2/2M to infinity instead of zero to infinity, see paper).

Cross section difference for the proton data. Statistical errors only.

More…

Measurement of the proton spin structure function g1(p) with a pure hydrogen target.

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akushevich, I. ; et al.
Phys.Lett.B 442 (1998) 484-492, 1998.
Inspire Record 473421 DOI 10.17182/hepdata.44220

A measurement of the proton spin structure function g1p(x,Q^2) in deep-inelastic scattering is presented. The data were taken with the 27.6 GeV longitudinally polarised positron beam at HERA incident on a longitudinally polarised pure hydrogen gas target internal to the storage ring. The kinematic range is 0.021<x<0.85 and 0.8 GeV^2<Q^2<20 GeV^2. The integral Int_{0.021}^{0.85} g1p(x)dx evaluated at Q0^2 of 2.5 GeV^2 is 0.122+/-0.003(stat.)+/-0.010(syst.).

2 data tables

The second systematic errors listed for G1/F1 (G1) are the uncertainties concerning R (R and F2).

G1 evolved at Q2 = 2.5 GeV**2, assuming G1/F1 to be independent of Q2. The second systematic errors listed for are the uncertainties concerning R and F2.


Measurement of the neutron spin structure function g1(n) with a polarized He-3 internal target.

The HERMES collaboration Ackerstaff, K. ; Airapetian, A. ; Akushevich, I. ; et al.
Phys.Lett.B 404 (1997) 383-389, 1997.
Inspire Record 440904 DOI 10.17182/hepdata.44586

Results are reported from the HERMES experiment at HERA on a measurement of the neutron spin structure function $g_1~n(x,Q~2)$ in deep inelastic scattering using 27.5 GeV longitudinally polarized positrons incident on a polarized $~3$He internal gas target. The data cover the kinematic range $0.023<x<0.6$ and $1 (GeV/c)~2 < Q~2 <15 (GeV/c)~2$. The integral $\int_{0.023}~{0.6} g_1~n(x) dx$ evaluated at a fixed $Q~2$ of $2.5 (GeV/c)~2$ is $-0.034\pm 0.013(stat.)\pm 0.005(syst.)$. Assuming Regge behavior at low $x$, the first moment $\Gamma_1~n=\int_0~1 g_1~n(x) dx$ is $-0.037\pm 0.013(stat.)\pm 0.005(syst.)\pm 0.006(extrapol.)$.

2 data tables

No description provided.

Data extrapolated to full x region. Second systematic error is the error on this extrapolation.


Inclusive electron scattering from nuclei at x approximately = 1

Arrington, J. ; Anthony, P. ; Arnold, R.G. ; et al.
Phys.Rev.C 53 (1996) 2248-2251, 1996.
Inspire Record 394586 DOI 10.17182/hepdata.25857

The inclusive A(e,e') cross section for $x \simeq 1$ was measured on $~2$H, C, Fe, and Au for momentum transfers $Q~2$ from 1-7 (GeV/c)$~2$. The scaling behavior of the data was examined in the region of transition from y-scaling to x-scaling. Throughout this transitional region, the data exhibit $\xi$-scaling, reminiscent of the Bloom-Gilman duality seen in free nucleon scattering.

3 data tables

No description provided.

No description provided.

No description provided.


Transverse longitudinal asymmetry in the quasielastic He-3 ---> e ---> e-prime) reaction

Hansen, J.O. ; Titko, M.A. ; DeSchepper, D. ; et al.
Phys.Rev.Lett. 74 (1995) 654-657, 1995.
Inspire Record 386633 DOI 10.17182/hepdata.19655

The transverse-longitudinal asymmetry ATL′ in He→3(e→, e′) quasielastic scattering at momentum transfer Q2=0.14 (GeV/c)2 has been measured to be 1.52 ± 0.55(stat) ± 0.15(syst)%. The plane wave impulse approximation (PWIA) prediction for this measurement ranges from 2.1% to 2.9%, where the variation is due to uncertainty in the initial state wave function, nucleon form factors, and off-shell prescription. The data may suggest a suppression with respect to the PWIA, which has also been observed for the unpolarized longitudinal response function.

1 data table

QUASIELASTIC REACTION.