Search for new physics in the $\tau$ lepton plus missing transverse momentum final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
JHEP 09 (2023) 051, 2023.
Inspire Record 2626189 DOI 10.17182/hepdata.135472

A search for physics beyond the standard model (SM) in the final state with a hadronically decaying tau lepton and a neutrino is presented. This analysis is based on data recorded by the CMS experiment from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to a total integrated luminosity of 138 fb$^{=1}$. The transverse mass spectrum is analyzed for the presence of new physics. No significant deviation from the SM prediction is observed. Limits are set on the production cross section of a W' boson decaying into a tau lepton and a neutrino. Lower limits are set on the mass of the sequential SM-like heavy charged vector boson and the mass of a quantum black hole. Upper limits are placed on the couplings of a new boson to the SM fermions. Constraints are put on a nonuniversal gauge interaction model and an effective field theory model. For the first time, upper limits on the cross section of $t$-channel leptoquark (LQ) exchange are presented. These limits are translated into exclusion limits on the LQ mass and on its coupling in the $t$-channel. The sensitivity of this analysis extends into the parameter space of LQ models that attempt to explain the anomalies observed in B meson decays. The limits presented for the various interpretations are the most stringent to date. Additionally, a model-independent limit is provided.

15 data tables

The transverse mass distribution of $ au$ leptons and missing transverse momentum observed in the Run-2 data (black dots with statistical uncertainty) as well as the expectation from SM processes (stacked histograms). Different signal hypotheses normalized to 10 fb$^{-1}$ are illustrated as dashed lines for exemplary SSM W$\prime$ boson, QBH and EFT signal hypotheses. The ratios of the background-subtracted data yields to the expected background yields are presented in the lower panel. The combined statistical and systematic uncertainties in the background are represented by the grey shaded band in the ratio panel.

Bayesian upper exclusion limits at 95% CL on the product of the cross section and branching fraction of a W$\prime$ boson decaying to a $\tau$ lepton and a neutrino in the SSM model. For this model, W$\prime$ boson masses of up to 4.8 TeV can be excluded. The limit is given by the intersection of the observed (solid) limit and the theoretical cross section (blue dotted curve). The 68 and 95% quantiles of the limits are represented by the green and yellow bands, respectively. The $\sigma \mathcal{B}$ for an SSM W' boson, along with its associated uncertainty, calculated at NNLO precision in QCD is shown.

Bayesian 95% CL model-independent upper limit on the product of signal cross sections and branching fraction for the $\tau+\nu$ decay for a back-to-back $\tau$ lepton plus $p_{T}^{miss}$ topology. To calculate this limit, all events for signal, background, and data are summed starting from a minimum $m_{T}$ threshold and then divided by the total number of events. No assumption on signal shape is included in this limit. The expected (dashed line) and observed (solid line) limits are shown as well as the 68% and 95% CL uncertainty bands (green and yellow, respectively).

More…

Single identified hadron spectra from s(NN)**1/2 = 130-GeV Au + Au collisions.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 69 (2004) 024904, 2004.
Inspire Record 623413 DOI 10.17182/hepdata.149578

Transverse momentum spectra and yields of hadrons are measured by the PHENIX collaboration in Au + Au collisions at sqrt(s_NN) = 130 GeV at the Relativistic Heavy Ion Collider (RHIC). The time-of-flight resolution allows identification of pions to transverse momenta of 2 GeV/c and protons and antiprotons to 4 GeV/c. The yield of pions rises approximately linearly with the number of nucleons participating in the collision, while the number of kaons, protons, and antiprotons increases more rapidly. The shape of the momentum distribution changes between peripheral and central collisions. Simultaneous analysis of all the p_T spectra indicates radial collective expansion, consistent with predictions of hydrodynamic models. Hydrodynamic analysis of the spectra shows that the expansion velocity increases with collision centrality and collision energy. This expansion boosts the particle momenta, causing the yield from soft processes to exceed that for hard to large transverse momentum, perhaps as large as 3 GeV/c.

30 data tables

The sources of systematic uncertainties in $\langle p_T \rangle$ and $dN$/$dy$.

The $dN$/$dy$ at midrapidity for hadrons produced at midrapidity in each centrality class.

The resulting inverse slopes in MeV after fitting an $m_T$ exponential to the spectra in the range $m_T$-$m_0$ < 1 GeV in each event centrality classes. The pion resonance region is excluded in the fits. The equivalent $p_T$ fit range for each particle is shown accordingly.

More…

Combination of inclusive top-quark pair production cross-section measurements using ATLAS and CMS data at $\sqrt{s}= 7$ and 8 TeV

The ATLAS & CMS collaborations Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 07 (2023) 213, 2023.
Inspire Record 2088291 DOI 10.17182/hepdata.110250

A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron-muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and about 20 fb$^{-1}$ at $\sqrt{s}=8$ TeV for each experiment. The combined cross-sections are determined to be $178.5 \pm 4.7$ pb at $\sqrt{s}=7$ TeV and $243.3^{+6.0}_{-5.9}$ pb at $\sqrt{s}=8$ TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be $R_{8/7}= 1.363\pm 0.032$. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $m_t^\text{pole} = 173.4^{+1.8}_{-2.0}$ GeV and $\alpha_\text{s}(m_Z)= 0.1170^{+ 0.0021}_{-0.0018}$.

2 data tables

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.


Evidence for the Higgs boson decay to a $Z$ boson and a photon at the LHC

The ATLAS & CMS collaborations Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.Lett. 132 (2024) 021803, 2024.
Inspire Record 2666787 DOI 10.17182/hepdata.142406

The first evidence for the Higgs boson decay to a $Z$ boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision data sets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140 fb$^{-1}$ for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is $2.2\pm0.7$ times the Standard Model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.

1 data table

The negative profile log-likelihood test statistic, where $\Lambda$ represents the likelihood ratio, as a function of the signal strength $\mu$ derived from the ATLAS data, the CMS data, and the combined result.


Measurement of density correlations in pseudorapidity via charged particle multiplicity fluctuations in Au+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 76 (2007) 034903, 2007.
Inspire Record 749066 DOI 10.17182/hepdata.143610

Longitudinal density correlations of produced matter in Au+Au collisions at sqrt(s_NN)=200 GeV have been measured from the inclusive charged particle distributions as a function of pseudorapidity window sizes. The extracted \alpha \xi parameter, related to the susceptibility of the density fluctuations in the long wavelength limit, exhibits a non-monotonic behavior as a function of the number of participant nucleons, N_part. A local maximum is seen at N_part ~ 90, with corresponding energy density based on the Bjorken picture of \epsilon_Bj \tau ~ 2.4 GeV/(fm^2 c) with a transverse area size of 60 fm^2. This behavior may suggest a critical phase boundary based on the Ginzburg-Landau framework.

4 data tables

Weighted mean of corrected NBD $k$, $<k_c>$ as a function of pseudorapidity window size. The dominant sources systematic correlate with dead maps (corr.sys.(dead)) and two-track seperation cuts (corr.sys.(fake)). The total systematic error (uncorr.sys.) is the quadratic sum over all errors.

Weighted mean of corrected NBD $k$, $<k_c>$ as a function of pseudorapidity window size. The dominant sources systematic correlate with dead maps (corr.sys.(dead)) and two-track seperation cuts (corr.sys.(fake)). The total systematic error (uncorr.sys.) is the quadratic sum over all errors.

Fit results based on $k(\delta_{\eta})$=$1/{{2\alpha\xi}/{\delta_{\eta}}}$ ($\xi << \delta_{\eta}$).

More…

Measurement of non-random event-by-event fluctuations of average transverse momentum in s**(1/2) = 200-GeV Au + Au and p + p collisions.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 93 (2004) 092301, 2004.
Inspire Record 630161 DOI 10.17182/hepdata.143470

Event-by-event fluctuations of the average transverse momentum of produced particles near mid-rapidity have been measured by the PHENIX Collaboration in sqrt(s_NN)=200 GeV Au+Au and p+p collisions at the Relativistic Heavy Ion Collider. The fluctuations are observed to be in excess of the expectation for statistically independent particle emission for all centralities. The excess fluctuations exhibit a dependence on both the centrality of the collision and on the transverse momentum window over which the average is calculated. Both the centrality and p_T dependence can be well reproduced by a simulation of random particle production with the addition of contributions from hard scattering processes.

4 data tables

Comparisons between the data and mixed event $M_{p_T}$ distributions for the representative 0-5% centrality classes. Also given are the residuals between the data and mixed events in units of standard deviations of the data points form the mixed event points.

Comparisons between the data and mixed event $M_{p_T}$ distributions for the representative 30-35% centrality classes. Also given are the residuals between the data and mixed events in units of standard deviations of the data points form the mixed event points.

$F_{p_T}$ (in percent, 0.2 GeV/$c$ < $p_T$ < 2.0 GeV/$c$) as a function of centrality, which is expressed in terms of the number of participants in the collision, $N_{part}$.

More…

Net charge fluctuations in Au + Au interactions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 89 (2002) 082301, 2002.
Inspire Record 584417 DOI 10.17182/hepdata.143184

Data from Au + Au interactions at sqrt(s_NN) = 130 GeV, obtained with the PHENIX detector at RHIC, are used to investigate local net charge fluctuations among particles produced near mid-rapidity. According to recent suggestions, such fluctuations may carry information from the Quark Gluon Plasma. This analysis shows that the fluctuations are dominated by a stochastic distribution of particles, but are also sensitive to other effects, like global charge conservation and resonance decays.

5 data tables

The normalized variance $v(Q)$as a function of $n_{ch}$.

The normalized variance $v(R)$ as a function of $n_{ch}$.

The normalized variance $v(Q)$ for different centrality classes.

More…

Suppressed pi0 production at large transverse momentum in central Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 91 (2003) 072301, 2003.
Inspire Record 617814 DOI 10.17182/hepdata.143254

Transverse momentum spectra of neutral pions in the range 1 < p_T < 10 GeV/c have been measured at mid-rapidity by the PHENIX experiment at RHIC in Au+Au collisions at sqrt(s_NN) = 200 GeV. The pi^0 multiplicity in central reactions is significantly below the yields measured at the same sqrt(s_NN) in peripheral Au+Au and p+p reactions scaled by the number of nucleon-nucleon collisions. For the most central bin, the suppression factor is ~2.5 at p_T = 2 GeV/c and increases to ~4-5 at p_T ~= 4 GeV/c. At larger p_T, the suppression remains constant within errors. The deficit is already apparent in semi-peripheral reactions and increases smoothly with centrality.

26 data tables

Invariant $\pi^0$ yields at midrapidity as a function of $p_T$ for minimum bias and nine centralities in $Au\ +\ Au$ at $\sqrt{s_{NN}} = 200\ GeV$ [0%–10% (80%–92%) is most central (peripheral)]. The labels "uncorr." and "corr." include systematic errors that are uncorrelated and correlated point-to-point, respectively.

Invariant $\pi^0$ yields at midrapidity as a function of $p_T$ for minimum bias and nine centralities in $Au\ +\ Au$ at $\sqrt{s_{NN}} = 200\ GeV$ [0%–10% (80%–92%) is most central (peripheral)]. The labels "uncorr." and "corr." include systematic errors that are uncorrelated and correlated point-to-point, respectively.

Invariant $\pi^0$ yields at midrapidity as a function of $p_T$ for minimum bias and nine centralities in $Au\ +\ Au$ at $\sqrt{s_{NN}} = 200\ GeV$ [0%–10% (80%–92%) is most central (peripheral)]. The labels "uncorr." and "corr." include systematic errors that are uncorrelated and correlated point-to-point, respectively.

More…

Event-by-event fluctuations in mean p(T) and mean e(T) in s(NN)**(1/2) = 130-GeV Au + Au collisions.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 66 (2002) 024901, 2002.
Inspire Record 584452 DOI 10.17182/hepdata.143150

Distributions of event-by-event fluctuations of the mean transverse momentum and mean transverse energy near mid-rapidity have been measured in Au+Au collisions at sqrt(s_NN) = 130 GeV at RHIC. By comparing the distributions to what is expected for statistically independent particle emission, the magnitude of non-statistical fluctuations in mean transverse momentum is determined to be consistent with zero. Also, no significant non-random fluctuations in mean transverse energy are observed. By constructing a fluctuation model with two event classes that preserve the mean and variance of the semi-inclusive p_T or e_T spectra, we exclude a region of fluctuations in sqrt(s_NN) = 130 GeV Au+Au collisions.

5 data tables

The $N_{tracks}$ distribution for the $0-10\%$ centrality class (data points) compared to the $N_{mix}$ distribution from the mixed event sample (curve).

The $M_{p_T}$ distributions for four different centrality classes. The curves are the random baseline mixed event distributions.

The residual distribution between the data and mixed event $M_{p_T}$ in units of standard deviations for all centrality classes. The total ${\chi}^2$ and the number of degrees of freedom for the $0-5\%$, $0-10\%$, $10-20\%$, $20-30\%$ centrality classes are 89.0/39, 155.7/40,163.3/47, and 218.4/61, respectively.

More…

Measurement of single electron event anisotropy in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 72 (2005) 024901, 2005.
Inspire Record 676189 DOI 10.17182/hepdata.143206

The transverse momentum dependence of the azimuthal anisotropy parameter v_2, the second harmonic of the azimuthal distribution, for electrons at mid-rapidity (|eta| < 0.35) has been measured with the PHENIX detector in Au+Au collisions at sqrt(s_NN) = 200 GeV. The measurement was made with respect to the reaction plane defined at high rapidities (|eta| = 3.1 -- 3.9). From the result we have measured the v_2 of electrons from heavy flavor decay after subtraction of the v_2 of electrons from other sources such as photon conversions and Dalitz decay from light neutral mesons. We observe a non-zero single electron v_2 with a 90% confidence level in the intermediate p_T region.

1 data table

Transverse momentum dependence of inclusive electron $v_2$ and heavy quark electron $v_2$.