Double-polarization asymmetries for inclusive $ep$ scattering were measured at Jefferson Lab using 2.6 and 4.3 GeV longitudinally polarized electrons incident on a longitudinally polarized NH$_3$ target in the CLAS detector. The polarized structure function $g_1(x,Q^2)$ was extracted throughout the nucleon resonance region and into the deep inelastic regime, for $Q^2 = 0.15 -1.64 $GeV$^2$. The contributions to the first moment $\Gamma_1(Q^2) = \int g_1(x,Q^2)dx$ were determined up to $Q^2=1.2$ GeV$^2$. Using a parametrization for $g_1$ in the unmeasured low $x$ regions, the complete first moment was estimated over this $Q^2$ region. A rapid change in $\Gamma_1$ is observed for $Q^2 < 1 $GeV$^2$, with a sign change near $Q^2 = 0.3 $GeV$^2$, indicating dominant contributions from the resonance region. At $Q^2=1.2$ GeV$^2$ our data are below the pQCD evolved scaling value.
The measured photon asymmetry (A1+ETA*A2) for the Q**2 region 0.15 to 0.22 GeV**2 obtained with a beam energy of 2.6 GeV.
The measured photon asymmetry (A1+ETA*A2) for the Q**2 region 0.6 to 1.10 GeV**2 obtained with a beam energy of 4.3 GeV.
The polarized structure function G1 as a function of Bjorken X for the Q**2range 0.15 to 0.27 GeV.
First results on charm quarkonia production in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are presented. The yield of J/Psi's measured in the PHENIX experiment via electron-positron decay pairs at mid-rapidity for Au-Au reactions at sqrt(s_NN) = 200 GeV are analyzed as a function of collision centrality. For this analysis we have studied 49.3 million minimum bias Au-Au reactions. We present the J/Psi invariant yield dN/dy for peripheral and mid-central reactions. For the most central collisions where we observe no signal above background, we quote 90% confidence level upper limits. We compare these results with our J/Psi measurement from proton-proton reactions at the same energy. We find that our measurements are not consistent with models that predict strong enhancement relative to binary collision scaling.
Measured invariant differential yield at mid-rapidity of J/PSI, as a function of centratility, times branching ratio Be+e-, for three bins of centrality : 0-20%, 20-40% and 40-90% of Au-Au cross-section. The 90% confidence level upper limit (CLUL) for the yield is also given.
Measured differential yield of J/PSI per binary collisions,at mid rapidity, as a function of the centrality, times branching ratio Be+e-.The 90% confidence level upper limit (CLUL) for J/PSI differential yield is also given. The values of the number of participants for each centrality bins are calculated for general information.
Diffractive dissociation of virtual photons, gamma* p-->Xp, has been studied in ep interactions with the ZEUS detector at HERA using an integrated luminosity of approx. 10 pb^-1. The data cover photon virtualities 0.17 < Q^2< 0.70 GeV^2 and 3 < Q^2< 80 GeV^2 with 3<M_X<38 GeV, where M_X is the mass of the hadronic final state.
The double differential cross section d2sig/dmx/dt measured with the LPS method for the Q**2 range 0.17 to 0.70 GeV**2.
The double differential cross section d2sig/dmx/dt measured with the LPS method for the Q**2 range 3 to 9 GeV**2.
The double differential cross section d2sig/dmx/dt measured with the LPS method for the Q**2 range 9 to 80 GeV**2.
Differential cross sections for γp→ηp have been measured with tagged real photons for incident photon energies from 0.75 to 1.95 GeV. Mesons were identified by missing mass reconstruction using kinematical information for protons scattered in the production process. The data provide the first extensive angular distribution measurements for the process above W=1.75 GeV. Comparison with preliminary results from a constituent quark model support the suggestion that a third S11 resonance with mass ∼1.8 GeV couples to the ηN channel.
Cross sections for photon energies 0.775 to 0.925 GeV.
Cross sections for photon energies 0.975 to 1.125 GeV.
Cross sections for photon energies 1.175 to 1.325 GeV.
We report on a measurement of the ratio of the differential cross sections for W and Z boson production as a function of transverse momentum in proton-antiproton collisions at sqrt(s) = 1.8 TeV. This measurement uses data recorded by the D0 detector at the Fermilab Tevatron in 1994-1995. It represents the first investigation of a proposal that ratios between W and Z observables can be calculated reliably using perturbative QCD, even when the individual observables are not. Using the ratio of differential cross sections reduces both experimental and theoretical uncertainties, and can therefore provide smaller overall uncertainties in the measured mass and width of the W boson than current methods used at hadron colliders.
The measured W and Z0 cross sections used to compute the ratio.
The measured ratios of W+-/Z0 cross sections, corrected for the branching ratios BR(W-->e-nue)=0.1073+-0.0025 and BR(Z0-->E+E-)=0.033632+-0.000059 (PDG 2000). The error given is the total error, but note that the 4.3pct error in the luminosity cancels completely in the ratio.
We describe a search for the pair production of first-generation scalar and vector leptoquarks in the eejj and enujj channels by the D0 Collaboration. The data are from the 1992--1996 ppbar run at sqrt{s} = 1.8 TeV at the Fermilab Tevatron collider. We find no evidence for leptoquark production; in addition, no kinematically interesting events are observed using relaxed selection criteria. The results from the eejj and enujj channels are combined with those from a previous D0 analysis of the nunujj channel to obtain 95% confidence level (C.L.) upper limits on the leptoquark pair-production cross section as a function of mass and of beta, the branching fraction to a charged lepton. These limits are compared to next-to-leading-order theory to set 95% C.L. lower limits on the mass of a first-generation scalar leptoquark of 225, 204, and 79 GeV/c^2 for beta=1, 1/2, and 0, respectively. For vector leptoquarks with gauge (Yang-Mills) couplings, 95% C.L. lower limits of 345, 337, and 206 GeV/c^2 are set on the mass for beta=1, 1/2, and 0, respectively. Mass limits for vector leptoquarks are also set for anomalous vector couplings.
No description provided.
No description provided.
No description provided.
Using a prompt neutrino beam in which a nu_tau component was identified for the first time, the nu_tau magnetic moment was measured based on a search for an anomalous increase in the number of neutrino-electron interactions. One such event was observed when 2.3 were expected from background processes, giving an upper 90% confidence limit of 3.9x10^-7 Bohr magnetons.
CONST(NAME=BOHR MAGNETON) is Bohr magneton.
We studied the exclusive reaction e p --> e' p' phi using the phi --> K^+ K^- decay mode. The data were collected using a 4.2 GeV incident electron beam and the CLAS detector at Jefferson Lab. Our experiment covers the range in Q^2 from 0.7 to 2.2 GeV^2, and W from 2.0 to 2.6 GeV. Taken together with all previous data, we find a consistent picture of phi production on the proton. Our measurement shows the expected decrease of the t-slope with the vector meson formation time c Delta tau below 2 fm. At = 0.6 fm, we measure b_phi = 2.27 +- 0.42 GeV^-2. The cross section dependence on W as W^{0.2+-0.1} at Q^2 = 1.3 GeV^2 was determined by comparison with phi production at HERA after correcting for threshold effects. This is the same dependence as observed in photoproduction.
Slope of the DSIG/DT distribution in different Q**2 regions.
Cross section as a function of Q**2 and W.
The differential cross section for exclusive PHI electroproduction off the photon, (TP=T-TMIN).
We report a measurement of the differential cross section for W boson production as a function of its transverse momentum in proton-antiproton collisions at sqrt{s} = 1.8 TeV. The data were collected by the D0 experiment at the Fermilab Tevatron Collider during 1994-1995 and correspond to an integrated luminosity of 85 pb^{-1}. The results are in good agreement with quantum chromodynamics over the entire range of transverse momentum.
Measurement of the PT distribution of W boson production for the W --> e nuchannel. The nominal PT is where the predicted function equals its mean value o ver the bin.
We present the first measurement of the electron angular distribution parameter alpha_2 in W to e nu events produced in proton-antiproton collisions as a function of the W boson transverse momentum. Our analysis is based on data collected using the D0 detector during the 1994--1995 Fermilab Tevatron run. We compare our results with next-to-leading order perturbative QCD, which predicts an angular distribution of (1 +/- alpha_1 cos theta* + alpha_2 cos^2 theta*), where theta* is the polar angle of the electron in the Collins-Soper frame. In the presence of QCD corrections, the parameters alpha_1 and alpha_2 become functions of p_T^W, the W boson transverse momentum. This measurement provides a test of next-to-leading order QCD corrections which are a non-negligible contribution to the W boson mass measurement.
Angular distributions of the emitted charged lepton is fitted to the formula d(sig)/d(pt**2)/dy/d(cos(theta*)) = const*(1 +- alpha_1*cos(theta*) + alpha_2*(cos(theta*))**2). The angle theta* is measured in the Collins-Soper frame. alpha_1 velues are calculated based on the measured PT(W) of each event. Possible variations of alpha_1 are treated as a source of systematic uncertainty.