The differential cross sections for antiproton elastic scattering on 4 He at 192.8 MeV/ c are measured. The annihilation cross section σ a = (377.6 ± 8.0) mb, the elastic cross section σ el = (206.3 ± 6.6) mb and the total p 4 He interaction cross section σ tot = (583.9 ± 10.4) mb are determined. The ratio of the real to imaginary part of the forward p 4 He amplitude is found: π =−0.17± 0.33 0.24 . Partial wave analysis reveals that the S, P and D waves are essential in this energy region.
Charged prong multiplicity distributions in pbar HE annihilation.
Mean charged particle multiplicity in pbar HE4 annihilations.
No description provided.
In the CERN NA32 experiment a high-resolution silicon vertex detector and a purely topological approach were used to collect 557 events consistent with associated charm production, both decay vertices being observed. The pseudorapidity gap distribution appears to be nearly independent of the nature of the charmed hadrons. This distribution is reasonably consistent with the next-to-leading order QCD calculations. However the azimuthal-angle distribution is significantly broader than the above predictions.
FOR ONLY 20 EVENTS IN WICH BOTH DECAYS ARE FULLY RECONSTRUCTED ( 26 D0 , 8 D+ , 5 D/S+ , 1 LAMBDA/C+ CHARMED PARTICLES ).
No description provided.
Data of the ηπ − system were obtained in the reaction π − p → ηπ − p at 6.3 GeV/ c beam momentum. About 17 k events of ηπ − were collected in the mass range 0.8 ⩽ M ηπ - ⩽ 1.8 GeV/ c 2 and in the range of the momentum transfer squared 0.075 ⩽ | t ′| ⩽ 0.60 (GeV/ c ) 2 . A large forward-backward asymmetry was observed around 1.3 GeV/ c 2 in the Gottfried-Jackson frame of the ηπ − system. A partial wave analysis of the data was performed. A peak of the D + wave attributed to a 2 (1320) is clearly seen. An enhancement is observed around 1.3 GeV/ c 2 in the P + wave.
No description provided.
No description provided.
We present the first measurement of the left-right cross section asymmetry (ALR) for Z boson production by e+e− collisions. The measurement was performed at a center-of-mass energy of 91.55 GeV with the SLD detector at the SLAC Linear Collider which utilized a longitudinally polarized electron beam. The average beam polarization was (22.4±0.6)%. Using a sample of 10 224 Z decays, we measure ALR to be 0.100±0.044(stat)±0.004(syst), which determines the effective weak mixing angle to be sin2θWeff=0.2378 ±0.0056(stat)±0.0005(syst).
R and L refer to Right and Left handed beam polarization.
Effective weak mixing angle.
We have measured antiproton production cross sections as functions of centrality in collisions of 14.6 GeV/c per nucleon Si28 ions with targets of Al, Cu, and Pb. For all targets, the antiproton yields increase linearly with the number of projectile nucleons that have interacted, and show little target dependence. We discuss the implications of this result on the production and absorption of antiprotons within the nuclear medium.
No description provided.
No description provided.
No description provided.
We report on a study of the differential cross section d σ /d y for the processes of elastic ν μ - and ν μ - electron scattering. The data on which this analysis is based were recorded between 1987 and 1990 with the CHARM II detector in the wide band neutrino beam at the CERN-SPS. For the first time the shapes of these y -distributions have been determined in a model-independent way. A fit to the data yields for the squares of the neutral coupling constants the ratio g R 2 / g L 2 =0.60 ± 0.19 (stat.) ± 0.09 (syst.).
Cross sections in arbitrary units.
Cross sections in arbitrary units.
Value of SIN2TW obtained from data.
The reaction γ+d → π++π−+p + n has been measured in a kinematically complete way at incident photon energies from 570 to 850 MeV in steps of 40 MeV. From detailed comparison of measured data with results of event simulations, it is concluded that three different mechanisms, the quasi-free, double-delta and phase space productions, contribute to the reaction. Each of the cross sections corresponding to these mechanisms is determined separately.
SYSTEMATIC ERRORS ARE NOT INCLUDED.
SYSTEMATIC ERRORS ARE NOT INCLUDED.
We present results from the initial run of Fermilab experiment E706. The data include incident π− and p beams at 500 GeV/c on Be and Cu targets, and span the kinematic ranges of transverse momentum and rapidity of 3.5≤pT≤10 GeV/c and −0.7≤yc.m.≤0.7, respectively. We have measured cross sections for π0 and direct-photon production, as well as the ηπ0 production ratio. From the data on Be and Cu, we have extracted the nuclear dependence of π0 production, parametrized as Aα. The cross sections are compared with next-to-leading-log QCD predictions for different choices of the QCD momentum scales and several sets of parton distribution functions.
No description provided.
No description provided.
No description provided.
The spin-rotation parameters A and R and the related spin-rotation angle β have been measured for π+p and π−p elastic scattering using protons polarized in the scattering plane. The pion-beam momenta are 427, 471, 547, 625, and 657 MeV/c and the angular range is −0.9≤cosΘc.m.≤0.3. The scattered pion and recoil proton were detected in coincidence, using a scintillator hodoscope for the pions, and the Large Acceptance Spectrometer combined with the JANUS polarimeter for the recoil protons. The results are compared with the four recent πN partial wave analyses (PWA's). Our data show that the major features of these PWA's are correct. The A and R measurements complete our program of pion-nucleon experiments, providing full data sets at three of the above beam momenta. Such sets can be used to test the constraints in the PWA's or to obtain a model-independent set of πN scattering amplitudes.
BETA is the spin-rotation angle.
BETA is the spin-rotation angle.
BETA is the spin-rotation angle.
The analyzing power AN of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5 × 10−3 to 5.0 × 10−2 (GeV/c)2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed.
No description provided.