Using data recorded by the CLEO II detector at the Cornell Electron Storage Ring, we report the first observation of an excited charmed baryon decaying into Ξc0π+. The state has mass difference M(Ξc0π+)−M(Ξc0) of 174.3±0.5±1.0MeV/c2, and a width of <3.1MeV/c2 (90% confidence level limit). We identify the new state as the Ξc*+, the isospin partner of the recently discovered Ξc*0.
CONST(NAME=EPS) is the parameter of the Peterson fragmentation function (C.Peterson et al., PR D27, 105 (1983)) D(N)/D(X) = FD(X) = const * (1/X)*1/(1- (1/X)-CONST(NAME=EPS)/(1-X))**2. Charged conjugate states are undestood.
Using the CLEO II detector operating at the e + e − Cornell Electron Storage Ring (CESR), we present evidence for new decay modes of the Ξ c + into Ξ 0 π + , Ξ 0 π + π 0 , and Ξ 0 π + π − π + . The branching ratios of these decay modes, relative to Ξ c + → Ξ − π + π + , have been measured to be 0.55±0.13±0.09, 2.34±0.57±0.37, and 1.74±0.42±0.27, respectively.
Charge conjugate modes are imlied. P(P=3,C=MAX) is the maximum momentum value and given by P(P=3,C=MAX)**2 = E(P=1)**2 - M(P=3)**2).
We report the observation of the Cabibbo-suppressed decays \lcpkk\ and \lcpphi\ using data collected with the CLEO II detector at CESR. The latter mode, observed for the first time with significant statistics, is of interest as a test of color-suppression in charm decays. We have determined the branching ratios for these modes relative to \lcpkpi\ and compared our results with theory.
Branching ratio of Cabibbo-suppressed and resolved modes.
Using data recorded by the CLEO-II detector at CESR, we report the first observation of a narrow state decaying into $\Xi_c~+\pi~-$. The state has mass difference $M(\Xi_c~+\pi~-)-M(\Xi_c~+)$ of $178.2\pm0.5\pm1.0$ $\rm{MeV/c~2}$, and a width of $<5.5$ $\rm{MeV/c~2}$ (90\% confidence level limit). The most likely explanation of this new state is that it is the $J=\32$ spin excitation of the $\Xi_c~0$ charmed baryon.
No description provided.
We analyze a sample of W + jet events collected with the Collider Detector at Fermilab (CDF) in ppbar collisions at sqrt(s) = 1.8 TeV to study ttbar production. We employ a simple kinematical variable "H", defined as the scalar sum of the transverse energies of the lepton, neutrino and jets. For events with a W boson and four or more jets, the shape of the "H" distribution deviates by 3.8 standard deviations from that expected from known backgrounds to ttbar production. However this distribution agrees well with a linear combination of background and ttbar events, the agreement being best for a top mass of 180 GeV/c^2.
A result of the study of the W + >= 4JETS data sample used in PRL 74, 2626, based on 67 pb-1 of integrated luminosity.. Different fit results due to two choices of the Q2 scale in VECBOS program (see paper).
Using data collected by the CLEO II detector, we have observed two states decaying to Λc+π+π−. Relative to the Λc+, their mass splittings are measured to be +307.5±0.4±1.0 and +342.2±0.2±0.5MeV/c2, respectively; this represents the first measurement of the less massive state. These two states are consistent with being orbitally excited, isospin zero Λc+ states.
CONST(NAME=EPS) is the parameter of the Peterson fragmentation function (C.Peterson et al., PR D27, 105 (1983)) D(N)/D(Z) = FD(Z) = const * (1/Z)*1/(1 - (1/Z)-CONST(NAME=EPS)/(1-Z))**2. Charged conjugated states are understood.
Charged conjugated states are understood.
Charged conjugated states are understood.
This analysis is based on data from neutrino and antineutrino scattering on hydrogen and deuterium, obtained with BEBC in the (anti) neutrino wideband beam of the CERN SPS. The parton momentum distrib
No description provided.
No description provided.
No description provided.
We have measured the B0B¯0 mixing probability, χd, using a sample of 965 000 BB¯ pairs from Υ(4S) decays. Counting dilepton events, we find χd=0.157±0.016±0.018−0.021+0.028. Using tagged B0 events, we find χd=0.149±0.023±0.019±0.010. The first (second) error is statistical (systematic). The third error reflects a ±15% uncertainty in the assumption, made in both cases, that charged and neutral B pairs contribute equally to dilepton events. We also obtain a limit on the CP impurity in the Bd0 system, ‖Re(εB0)‖<0.045 at 90% C.L.
No description provided.
Mixing parameter from counting dilepton events. CONST(N=MIXING PARAM) = 1/(1 - LAMBDA(C,N)) * (N(2LEPTON+) + N(2LEPTON-))/(N(LEPTON+,LEPTON-) + N(2LEPTON+) + N(2LEPTON-)). LAMBDA(C,N) is the fraction of dilepton events coming from B+B- decays, LAMBDA(C,N) = f(B+)*Br(B+)**2/(f(B+)*Br(B+)**2 + f(B0)*Br(B0)**2), where f(B+),f(B0) are the productiron fractions of the charged and neutral B's at the UPSI(4S), and Br(B+), Br(B0) are the semileptonic brancing fractions.
Mixing parameter from tagged B0 events.
Using the CLEO-II detector at CESR, we have observed the D s 1 (2536) + in the decay modes D s1 + →D ∗0 K + and D ∗+ K S + , and measured its fragmentation and production ratios. Using the helicity angle distribution of the daugter D ∗0 , we obtain new evidence for the assignment of 1 + for the spin and parity of the D s 1 + . We also set upper limits on the decays D s1 + →D s ∗+ λ, D 0 K + and D + K s 0 .
No description provided.
No description provided.
We present a measurement of the cross section for production of isolated prompt photons in p¯p collisions at √s =1.8 TeV. The cross section, measured as a function of transverse momentum (PT), agrees qualitatively with QCD calculations but has a steeper slope at low PT.
Additional normalization systematic uncertainty of 27 pct for first eleven entries, and +32 pct(-46 pct) for last four entries.