Identification of hadronic tau lepton decays using a deep neural network

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JINST 17 (2022) P07023, 2022.
Inspire Record 2016054 DOI 10.17182/hepdata.116281

A new algorithm is presented to discriminate reconstructed hadronic decays of tau leptons ($\tau_\mathrm{h}$) that originate from genuine tau leptons in the CMS detector against $\tau_\mathrm{h}$ candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a $\tau_\mathrm{h}$ candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine $\tau_\mathrm{h}$ to pass the discriminator against jets increases by 10-30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient $\tau_\mathrm{h}$ reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved $\tau_\mathrm{h}$ reconstruction method are validated with LHC proton-proton collision data at $\sqrt{s} =$ 13 TeV.

30 data tables

Decay mode confusion matrix. For a given generated decay mode, the fractions of reconstructed tau_h in different decay modes are given, as well as the fraction of generated tau_h that are not reconstructed. Both the generated and reconstructed tau_h need to fulfil pt > 20 GeV and |eta| < 2.3. The tau_h candidates come from a Z to tau tau event sample with m(tau, tau) > 50 GeV.

Efficiency for quark and gluon jets to pass different tau identification discriminators versus the efficiency for genuine tau_h. The upper two plots are obtained with jets from the W+jets simulated sample and the lower two plots with jets from the tt sample. The left two plots include jets and genuine tau_h with pt < 100 GeV, whereas the right two plots include those with pt > 100 GeV. The working points are indicated as full circles. The efficiency for jets from the W+jets event sample, enriched in quark jets, to pass the discriminators is higher compared to jets from the tt event sample, which has a larger fraction of gluon and b-quark jets. The jet efficiency for a given tau_h efficiency is larger for jets and tau_h with pt < 100 GeV than for those with pt > 100 GeV. Compared with the previously used MVA discriminator, the DEEPTAU discriminator reduces the jet efficiency for a given tau_h efficiency by consistently more than a factor of 1.8, and by more at high tau_h efficiency. The additional gain at high pt comes from the inclusion of updated decay modes in the tau_h reconstruction, as illustrated by the curves for the previously used MVA discriminator but including reconstructed tau_h candidates with additional decay modes.

Efficiency for quark and gluon jets to pass different tau identification discriminators versus the efficiency for genuine tau_h. The upper two plots are obtained with jets from the W+jets simulated sample and the lower two plots with jets from the tt sample. The left two plots include jets and genuine tau_h with pt < 100 GeV, whereas the right two plots include those with pt > 100 GeV. The working points are indicated as full circles. The efficiency for jets from the W+jets event sample, enriched in quark jets, to pass the discriminators is higher compared to jets from the tt event sample, which has a larger fraction of gluon and b-quark jets. The jet efficiency for a given tau_h efficiency is larger for jets and tau_h with pt < 100 GeV than for those with pt > 100 GeV. Compared with the previously used MVA discriminator, the DEEPTAU discriminator reduces the jet efficiency for a given tau_h efficiency by consistently more than a factor of 1.8, and by more at high tau_h efficiency. The additional gain at high pt comes from the inclusion of updated decay modes in the tau_h reconstruction, as illustrated by the curves for the previously used MVA discriminator but including reconstructed tau_h candidates with additional decay modes.

More…

Measurements of $\pi^{\pm}$ differential yields from the surface of the T2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS

The NA61/SHINE collaboration Abgrall, N. ; Aduszkiewicz, A. ; Ajaz, M. ; et al.
Eur.Phys.J.C 76 (2016) 617, 2016.
Inspire Record 1431983 DOI 10.17182/hepdata.77061

Measurements of particle emission from a replica of the T2K 90 cm-long carbon target were performed in the NA61/SHINE experiment at CERN SPS, using data collected during a high-statistics run in 2009. An efficient use of the long-target measurements for neutrino flux predictions in T2K requires dedicated reconstruction and analysis techniques. Fully-corrected differential yields of $\pi^\pm$-mesons from the surface of the T2K replica target for incoming 31 GeV/c protons are presented. A possible strategy to implement these results into the T2K neutrino beam predictions is discussed and the propagation of the uncertainties of these results to the final neutrino flux is performed.

132 data tables

Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.

Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.

Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.

More…