Date

Version 2
Charged-particle distributions at low transverse momentum in $\sqrt{s}$=13 TeV pp interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 502, 2016.
Inspire Record 1467230 DOI 10.17182/hepdata.73907

Measurements of distributions of charged particles produced in proton-proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 $\mu$b$^{-1}$. The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators.

20 data tables

The average charged-particle muliplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

The average charged-particle muliplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

The extrapolated ($\tau > 30$ ps) average charged-particle muliplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

More…

D-meson production in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV and in pp collisions at $\sqrt{s}=7$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.C 94 (2016) 054908, 2016.
Inspire Record 1465513 DOI 10.17182/hepdata.73941

The production cross sections of the prompt charmed mesons D$^0$, D$^+$, D$^{*+}$ and D$_s$ were measured at mid-rapidity in p-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector at the LHC. D mesons were reconstructed from their decays D$^0\rightarrow{\rm K}^-\pi^+$, D$^+\rightarrow{\rm K}^-\pi^+\pi^+$, D$^{*+}\rightarrow D^0\pi^+$, D$_s^+\rightarrow\phi\pi^+\rightarrow{\rm K}^-{\rm K}^+\pi^+$, and their charge conjugates. The $p_{\rm T}$-differential production cross sections were measured at mid-rapidity in the interval $1<p_{\rm T}<24$ GeV/$c$ for D$^0$, D$^+$ and D$^{*+}$ mesons and in $2<p_{\rm T}<12$ GeV/$c$ for D$_s$ mesons, using an analysis method based on the selection of decay topologies displaced from the interaction vertex. The production cross sections of the D$^0$, D$^+$ and D$^{*+}$ mesons were also measured in three $p_{\rm T}$ intervals as a function of the rapidity $y_{\rm cms}$ in the centre-of-mass system in $-1.26<y_{\rm cms}<0.34$. In addition, the prompt D$^0$ cross section was measured in pp collisions at $\sqrt{s}=7$ TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV down to $p_{\rm T}=0$ using an analysis technique that is based on the estimation and subtraction of the combinatorial background, without reconstruction of the D$^0$ decay vertex. The nuclear modification factor $R_{\rm pPb}(p_{\rm T})$, defined as the ratio of the $p_{\rm T}$-differential D-meson cross section in p-Pb collisions and that in pp collisions scaled by the mass number of the Pb nucleus, was calculated for the four D-meson species and found to be compatible with unity within experimental uncertainties. The results are compared to theoretical calculations that include cold-nuclear-matter effects and to transport model calculations incorporating the interactions of charm quarks with an expanding deconfined medium.

21 data tables

pT-differential cross section of inclusive Dzero mesons in pp collisions at sqrt{sNN}=7 TeV in the rapidity interval |y|<0.5. Branching ratio of D0->Kpi : 0.0388.

pT-differential cross section of prompt Dzero mesons in pp collisions at sqrt{sNN}=7 TeV in the rapidity interval |y|<0.5. Branching ratio of D0->Kpi : 0.0388. Data points for pt<2 GeV/c from analysis "without vertexing". Data points for pt>2 GeV/c from the analysis "with vertexing" taken from JHEP 1201 (2012) 128 (http://hepdata.cedar.ac.uk/view/ins944757) and corrected for the updated BR value.

First column: production cross sections per unit of rapidity for prompt D0 mesons, inclusive D0 mesons (no feed-down subtraction) and charm quarks at mid-rapidity in pp collisions at 7 TeV. For D0 mesons, the second (sys) error is from the luminosity uncertainty, the third (sys) error is from the branching-ratio uncertainties. For charm quarks, the second (sys) error is from the luminosity uncertainty, the third (sys) error is from the Fragmentation Function uncertainties, the fourth (sys) error is from the rapidity shapes of D0 mesons and single charm quarks. Second column: total production cross sections, extrapolated to the full phase space, for prompt D0 mesons and charm quarks. For D0 mesons, the second (sys) error is the from the extrapolation uncertainty, the third from the luminosity uncertainty and the fourth from the branching-ratio uncertainties. For charm quarks, the second (sys) error is from the extrapolation, the third is from the luminosity uncertainty and the fourth is from the Fragmentation Function uncertainties. Third column: value of <pT> of prompt D0 mesons. The first uncertainty is statistical, the second is the systematic uncertainty.

More…

Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in $\sqrt{s_{NN}}=5.02$ TeV p+Pb collisions measured by the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 763 (2016) 313-336, 2016.
Inspire Record 1463284 DOI 10.17182/hepdata.75256

Measurements of the per-event charged-particle yield as a function of the charged-particle transverse momentum and rapidity are performed using $p+$Pb collision data collected by the ATLAS experiment at the LHC at a centre-of-mass energy of $\sqrt{s_{NN}}=5.02$ TeV. Charged particles are reconstructed over pseudorapidity $|\eta|<2.3$ and transverse momentum between $0.1$ GeV and $22$ GeV in a dataset corresponding to an integrated luminosity of $1$ $\mu b^{-1}$. The results are presented in the form of charged-particle nuclear modification factors, where the $p+$Pb charged-particle multiplicities are compared between central and peripheral $p+$Pb collisions as well as to charged-particle cross sections measured in pp collisions. The $p+$Pb collision centrality is characterized by the total transverse energy measured in $-4.9<\eta<-3.1$, which is in the direction of the outgoing lead beam. Three different estimations of the number of nucleons participating in the $p+$Pb collision are carried out using the Glauber model and two Glauber-Gribov colour-fluctuation extensions to the Glauber model. The values of the nuclear modification factors are found to vary significantly as a function of rapidity and transverse momentum. A broad peak is observed for all centralities and rapidities in the nuclear modification factors for charged-particle transverse momentum values around $3$ GeV. The magnitude of the peak increases for more central collisions as well as rapidity ranges closer to the direction of the outgoing lead nucleus.

59 data tables

Invariant differential $p_{T}$ spectra of charged particles which are produced in p+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV shown in six $\eta$ intervals, for the 0--90% centrality interval. The individual spectra are scaled by constant factors (indicated in the legend) for visibility. The statistical uncertainties are indicated with vertical lines and the systematic uncertainties are indicated with boxes, but are generally much smaller than the size of the symbols.

Invariant differential $p_{T}$ spectra of charged particles which are produced in p+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV shown in six y* intervals, for the 0--90% centrality interval. The individual spectra are scaled by constant factors (indicated in the legend) for visibility. The statistical uncertainties are indicated with vertical lines and the systematic uncertainties are indicated with boxes, but are generally much smaller than the size of the symbols.

The invariant differential y* spectra of charged particles produced in p+Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV are shown in five centrality intervals for $p_{T}>0.1$ GeV. The statistical uncertainties are indicated with vertical lines and the systematic uncertainties are indicated with boxes.

More…

Measurement of the double-differential inclusive jet cross section in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 451, 2016.
Inspire Record 1459051 DOI 10.17182/hepdata.73786

A measurement of the double-differential inclusive jet cross section as a function of jet transverse momentum pT and absolute jet rapidity |y| is presented. The analysis is based on proton-proton collisions collected by the CMS experiment at the LHC at a centre-of-mass energy of 13 TeV. The data samples correspond to integrated luminosities of 71 and 44 inverse picobarns for |y| < 3 and 3.2 < |y| < 4.7, respectively. Jets are reconstructed with the anti-kt clustering algorithm for two jet sizes, R, of 0.7 and 0.4, in a phase space region covering jet pT up to 2 TeV and jet rapidity up to |y| = 4.7. Predictions of perturbative quantum chromodynamics at next-to-leading order precision, complemented with electroweak and nonperturbative corrections, are used to compute the absolute scale and the shape of the inclusive jet cross section. The cross section difference in R, when going to a smaller jet size of 0.4, is best described by Monte Carlo event generators with next-to-leading order predictions matched to parton showering, hadronisation, and multiparton interactions. In the phase space accessible with the new data, this measurement provides a first indication that jet physics is as well understood at sqrt(s) = 13 TeV as at smaller centre-of-mass energies.

14 data tables

Inclusive Jet Cross Section for |rapidity| < 0.5 as a function of the jet transverse momentum. Jets are clustered with the anti-kt algorithm ( R = 0.7). The (sys) error is the total systematic error, including the luminosity uncertainty of 2.7%.

Inclusive Jet Cross Section for |rapidity| 0.5 TO 1.0 as a function of the jet transverse momentum. Jets are clustered with the anti-kt algorithm ( R = 0.7). The (sys) error is the total systematic error, including the luminosity uncertainty of 2.7%.

Inclusive Jet Cross Section for |rapidity| 1.0 TO 1.5 as a function of the jet transverse momentum. Jets are clustered with the anti-kt algorithm ( R = 0.7). The (sys) error is the total systematic error, including the luminosity uncertainty of 2.7%.

More…

Measurements of $Z\gamma$ and $Z\gamma\gamma$ production in $pp$ collisions at $\sqrt{s}=$ 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 112002, 2016.
Inspire Record 1448301 DOI 10.17182/hepdata.72823

The production of $Z$ bosons with one or two isolated high-energy photons is studied using $pp$ collisions at $\sqrt{s}$ = 8 TeV. The analyses use a data sample with an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS detector during the 2012 LHC data taking. The $Z\gamma$ and $Z\gamma\gamma$ production cross sections are measured with leptonic ($e^{+}e^{-}$, $\mu^{+}\mu^{-}$, $\nu\bar{\nu}$) decays of the $Z$ boson, in extended fiducial regions defined in terms of the lepton and photon acceptance. They are then compared to cross-section predictions from the Standard Model, where the sources of the photons are radiation off initial-state quarks and radiative $Z$-boson decay to charged leptons, and from fragmentation of final-state quarks and gluons into photons. The yields of events with photon transverse energy $E_T >$ 250 GeV from $\ell^{+}\ell^{-}\gamma$ events and with $E_T >$ 400 GeV from $\nu\bar{\nu}\gamma$ events are used to search for anomalous triple gauge-boson couplings $ZZ\gamma$ and $Z\gamma\gamma$. The yields of events with diphoton invariant mass $m_{\gamma\gamma} >$ 200 GeV from $\ell^{+}\ell^{-}\gamma\gamma$ events and with $m_{\gamma\gamma} > $ 300 GeV from $\nu\bar{\nu}\gamma\gamma$ events are used to search for anomalous quartic gauge-boson couplings $ZZ\gamma\gamma$ and $Z\gamma\gamma\gamma$. No deviations from Standard Model predictions are observed and limits are placed on parameters used to describe anomalous triple and quartic gauge-boson couplings.

11 data tables

Measured integrated cross sections for the $Z\gamma$ process for charged lepton final states at $\sqrt{s} = 8$ TeV in the extended fiducial regions defined in the paper, table 5. The parton-to-particle correction factors are also shown, which are defined as the ratio of the cross sections at parton-level to the cross sections at particle-level.

Measured integrated cross sections for the $Z\gamma$ process for neutrino final states at $\sqrt{s} = 8$ TeV in the extended fiducial regions defined in the paper, table 5. The parton-to-particle correction factors are also shown, which are defined as the ratio of the cross sections at parton-level to the cross sections at particle-level.

Measured integrated cross sections for the $Z\gamma\gamma$ process for charged lepton final states at $\sqrt{s} = 8$ TeV in the extended fiducial regions defined in the paper, table 5. The parton-to-particle correction factors are also shown, which are defined as the ratio of the cross sections at parton-level to the cross sections at particle-level.

More…

Measurement of fiducial differential cross sections of gluon-fusion production of Higgs bosons decaying to $WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ with the ATLAS detector at $\sqrt{s}=8$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2016) 104, 2016.
Inspire Record 1444991 DOI 10.17182/hepdata.76843

This paper describes a measurement of fiducial and differential cross sections of gluon-fusion Higgs boson production in the $H{\rightarrow\,}WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ channel, using 20.3 fb$^{-1}$ of proton-proton collision data. The data were produced at a centre-of-mass energy of $\sqrt{s} = 8$ TeV at the CERN Large Hadron Collider and recorded by the ATLAS detector in 2012. Cross sections are measured from the observed $H{\rightarrow\,}WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ signal yield in categories distinguished by the number of associated jets. The total cross section is measured in a fiducial region defined by the kinematic properties of the charged leptons and neutrinos. Differential cross sections are reported as a function of the number of jets, the Higgs boson transverse momentum, the dilepton rapidity, and the transverse momentum of the leading jet. The jet-veto efficiency, or fraction of events with no jets above a given transverse momentum threshold, is also reported. All measurements are compared to QCD predictions from Monte Carlo generators and fixed-order calculations, and are in agreement with the Standard Model predictions.

22 data tables

Measured total fiducial cross section in fb.

Measured fiducial cross section in fb as a function of Njet. Jet PT>25 GeV for |eta|<2.4 and PT>30 GeV for 2.4<|eta|<4.5.

Measured fiducial cross section in fb/GeV as a function of pTH.

More…

Centrality dependence of charged jet production in p-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
CERN-EP-2016-052, 2016.
Inspire Record 1427026 DOI 10.17182/hepdata.72903

Measurements of charged jet production as a function of centrality are presented for p-Pb collisions recorded at $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ALICE detector. Centrality classes are determined via the energy deposit in neutron calorimeters at zero degree, close to the beam direction, to minimise dynamical biases of the selection. The corresponding number of participants or binary nucleon-nucleon collisions is determined based on the particle production in the Pb-going rapidity region. Jets have been reconstructed in the central rapidity region from charged particles with the anti-$k_{\rm T}$ algorithm for resolution parameters $R = 0.2$ and $R = 0.4$ in the transverse momentum range 20 to 120 GeV/$c$. The reconstructed jet momentum and yields have been corrected for detector effects and underlying-event background. In the five centrality bins considered, the charged jet production in p-Pb collisions is consistent with the production expected from binary scaling from pp collisions. The ratio of jet yields reconstructed with the two different resolution parameters is also independent of the centrality selection, demonstrating the absence of major modifications of the radial jet structure in the reported centrality classes.

31 data tables

pp reference spectrum, obtained by scaling down the measured charged jets at 7 TeV to 5.02 TeV for R = 0.2 jets.

$p_{\rm T}$-differential production cross section of charged jets in p-Pb collisions at 5.02 TeV for R = 0.2 measured with the ALICE detector, centrality 0-20%.

$p_{\rm T}$-differential production cross section of charged jets in p-Pb collisions at 5.02 TeV for R = 0.2 measured with the ALICE detector, centrality 20-40%.

More…

Charged-particle distributions in $pp$ interactions at $\sqrt{s}=8$ TeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 403, 2016.
Inspire Record 1426695 DOI 10.17182/hepdata.73012

This paper presents measurements of distributions of charged particles which are produced in proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV and recorded by the ATLAS detector at the LHC. A special dataset recorded in 2012 with a small number of interactions per beam crossing (below 0.004) and corresponding to an integrated luminosity of $160 \mathrm{\mu b^{-1}}$ was used. A minimum-bias trigger was utilised to select a data sample of more than 9 million collision events. The multiplicity, pseudorapidity, and transverse momentum distributions of charged particles are shown in different regions of kinematics and charged-particle multiplicity, including measurements of final states at high multiplicity. The results are corrected for detector effects and are compared to the predictions of various Monte Carlo event generator models which simulate the full hadronic final state.

15 data tables

Central primary-charged-particle density 1/Nev dNch/deta at eta = 0 for five different phase spaces. The results are given for the fiducial definition tau > 300 ps, as well as for the previously used fiducial definition tau > 30 ps using an extrapolation factor of 1.012 +- 0.004 (for pT > 100 MeV) or 1.025 +- 0.008 (for pT > 500 MeV), which accounts for the fraction of charged strange baryons predicted by Epos LHC simulation.

Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 8000 GeV for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.

Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 8000 GeV for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

More…

Measurements of $W^\pm Z$ production cross sections in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 092004, 2016.
Inspire Record 1426523 DOI 10.17182/hepdata.75197

This paper presents measurements of $W^\pm Z$ production in $pp$ collisions at a center-of-mass energy of 8 TeV. The gauge bosons are reconstructed using their leptonic decay modes into electrons and muons. The data were collected in 2012 by the ATLAS experiment at the Large Hadron Collider, and correspond to an integrated luminosity of 20.3 fb$^{-1}$. The measured inclusive cross section in the detector fiducial region is $\sigma_{W^\pm Z \rightarrow \ell^{'} \nu\ \ell \ell} = 35.1 \pm$ 0.9 (stat.) $\pm 0.8$ (sys.) $\pm 0.8$ (lumi.) fb, for one leptonic decay channel. In comparison, the next-to-leading-order Standard Model expectation is 30.0 $\pm$ 2.1 fb. Cross sections for $W^+Z$ and $W^-Z$ production and their ratio are presented as well as differential cross sections for several kinematic observables. Limits on anomalous triple gauge boson couplings are derived from the transverse mass spectrum of the $W^\pm Z$ system. From the analysis of events with a $W$ and a $Z$ boson associated with two or more forward jets an upper limit at 95% confidence level on the $W^\pm Z$ scattering cross section of 0.63 fb, for each leptonic decay channel, is established, while the Standard Model prediction at next-to-leading order is 0.13 fb. Limits on anomalous quartic gauge boson couplings are also extracted.

48 data tables

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

More…

Measurement of total and differential $W^+W^-$ production cross sections in proton-proton collisions at $\sqrt{s}=$ 8 TeV with the ATLAS detector and limits on anomalous triple-gauge-boson couplings

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2016) 029, 2016.
Inspire Record 1426515 DOI 10.17182/hepdata.76808

The production of $W$ boson pairs in proton-proton collisions at $\sqrt{s}=$ 8 TeV is studied using data corresponding to 20.3 fb$^{-1}$ of integrated luminosity collected by the ATLAS detector during 2012 at the CERN Large Hadron Collider. The $W$ bosons are reconstructed using their leptonic decays into electrons or muons and neutrinos. Events with reconstructed jets are not included in the candidate event sample. A total of 6636 $WW$ candidate events are observed. Measurements are performed in fiducial regions closely approximating the detector acceptance. The integrated measurement is corrected for all acceptance effects and for the $W$ branching fractions to leptons in order to obtain the total $WW$ production cross section, which is found to be 71.1$\pm1.1$(stat)$^{+5.7}_{-5.0}$(syst)$\pm1.4$ pb. This agrees with the next-to-next-to-leading-order Standard Model prediction of 63.2$^{+1.6}_{-1.4}$(scale)$\pm1.2$(PDF) pb. Fiducial differential cross sections are measured as a function of each of six kinematic variables. The distribution of the transverse momentum of the leading lepton is used to set limits on anomalous triple-gauge-boson couplings.

29 data tables

Measured production cross sections of WW production in the fiducial region for different final states corresponding to different W decay channels: both W's decaying into electrons or both decaying to muon. The cross sections are defined for direct decays of the W bosons into prompt electrons or muons, intermediate decays into tau leptons are disregarded. The electrons are required to be contained within abs(eta)<2.47 and to lie outside of 1.37 < abs(eta) < 1.53, muons are required to lie within abs(eta)<2.4. The leading and subleading leptons in the events are required to have a transverse momentum above 25 and 20 GeV respectively. The transverse momentum of the vectorial sum of the neutrinos in the event should be larger than 45 GeV (PT(C=SUM(NU))). The transverse momentum of the vectorial sum of the neutrinos multiplied by the sine of azimuthal difference between lepton and the vectorial sum of the neutrinos in the event should be larger than 45 GeV if the azimuthal difference between lepton and the vectorial sum of the neutrinos is smaller than PI/2. The invariant mass of the leptons should exceed 15 GeV. The absolute difference between the invariant mass of the leptons and the mass of the Z boson should be larger than 15 GeV. Particle-level jets are defined using the anti-kT algorithm with radius of 0.4. No jets above 25 GeV and within abs(eta)<4.5 are allowed in the event. Both, resonant and non-resonant WW production processes, are included in the cross sections.

Measured production cross section of WW production in the fiducial region in case one W boson decays into a prompt electron and the other one into a prompt muon. The cross section is defined for direct decays of the W bosons into prompt electrons or muons, intermediate decays into tau leptons are disregarded. The electrons are required to be contained within abs(eta)<2.47 and to lie outside of 1.37 < abs(eta) < 1.53, muons are required to lie within abs(eta)<2.4. The leading and subleading leptons in the events are required to have a transverse momentum above 25 and 20 GeV respectively. The transverse momentum of the vectorial sum of the neutrinos in the event should be larger than 20 GeV (PT(C=SUM(NU))). The transverse momentum of the vectorial sum of the neutrinos is multiplied by the sine of the azimuthal difference between lepton and the vectorial sum of the neutrinos if their azimuthal difference is smaller than PI/2. It is required to be larger than 15 GeV. The invariant mass of the leptons should exceed 10 GeV. Particle-level jets are defined using the anti-kT algorithm with radius of 0.4. No jets above 25 GeV and within abs(eta)<4.5 are allowed in the event. Both, resonant and non-resonant WW production processes, are included in the cross sections.

Measured total production cross sections of WW production in the total phase space. Both, resonant and non-resonant WW, production are considered as signal.

More…