Charged particle multiplicity distributions in positron-proton deep inelastic scattering at a centre-of-mass energy $\sqrt{s}=319$ GeV are measured. The data are collected with the H1 detector at HERA corresponding to an integrated luminosity of $136$ pb${}^{-1}$. Charged particle multiplicities are measured as a function of photon virtuality $Q^2$, inelasticity $y$ and pseudorapidity $\eta$ in the laboratory and the hadronic centre-of-mass frames. Predictions from different Monte Carlo models are compared to the data. The first and second moments of the multiplicity distributions are determined and the KNO scaling behaviour is investigated. The multiplicity distributions as a function of $Q^2$ and the Bjorken variable $x_{\rm Bj}$ are converted to the hadron entropy $S_{\rm hadron}$, and predictions from a quantum entanglement model are tested.
Charged particle multiplicity distribution $P(N)$ measured as a function of the number of charged particles $N$ in 4x4 kinematic bins of $Q^2$ and $y$.
Charged particle multiplicity distribution $P(N)$ measured as a function of the number of charged particles $N$ in three overlapping pseudorapidity ranges $-1.2<\eta_{lab}\vert<0.2$, $-0.5<\eta_{lab}\vert<0.9$ and $0.2<\eta_{lab}\vert<1.6$, subdivided into 4x4 kinematic bins of $Q^2$ and $y$.
Charged particle multiplicity distribution $P(N)$ measured as a function of the number of charged particles $N$ with the additional restriction to select only particles from the current region of the Breit frame $0<\eta^{*}<4$, in 4x4 kinematic bins of $Q^2$ and $y$.
The proton-proton elastic differential cross section ${\rm d}\sigma/{\rm d}t$ has been measured by the TOTEM experiment at $\sqrt{s}=2.76$ TeV energy with $\beta^{*}=11$ m beam optics. The Roman Pots were inserted to 13 times the transverse beam size from the beam, which allowed to measure the differential cross-section of elastic scattering in a range of the squared four-momentum transfer ($|t|$) from $0.36$ GeV$^{2}$ to $0.74$ GeV$^{2}$. The differential cross-section can be described with an exponential in the $|t|$-range between $0.36$ GeV$^{2}$ and $0.54$ GeV$^{2}$, followed by a diffractive minimum (dip) at $|t_{\rm dip}| = 0.61 \pm 0.03$ GeV$^{2}$ and a subsequent maximum (bump). The ratio of the ${\rm d}\sigma/{\rm d}t$ at the bump and at the dip is $1.7\pm 0.2$. When compared to the $\rm p\bar{p}$ measurement of the D0 experiment at $\sqrt s = 1.96$ TeV, a significant difference can be observed. Under the condition that the effects due to the energy difference between TOTEM and D0 can be neglected, the result provides evidence for a colourless 3-gluon bound state exchange in the $t$-channel of the proton-proton elastic scattering.
Differential cross-section.
Differential cross-section.
The TOTEM collaboration has measured the elastic proton-proton differential cross section ${\rm d}\sigma/{\rm d}t$ at $\sqrt{s}=13$ TeV LHC energy using dedicated $\beta^{*}=90$ m beam optics. The Roman Pot detectors were inserted to 10$\sigma$ distance from the LHC beam, which allowed the measurement of the range $[0.04$ GeV$^{2};4 $GeV$^{2}] $ in four-momentum transfer squared $|t|$. The efficient data acquisition allowed to collect about 10$^{9}$ elastic events to precisely measure the differential cross-section including the diffractive minimum (dip), the subsequent maximum (bump) and the large-$|t|$ tail. The average nuclear slope has been found to be $B=(20.40 \pm 0.002^{\rm stat} \pm 0.01^{\rm syst})~$GeV$^{-2}$ in the $|t|$-range $0.04~$GeV$^{2}$ to $0.2~$GeV$^{2}$. The dip position is $|t_{\rm dip}|=(0.47 \pm 0.004^{\rm stat} \pm 0.01^{\rm syst})~$GeV$^{2}$. The differential cross section ratio at the bump vs. at the dip $R=1.77\pm0.01^{\rm stat}$ has been measured with high precision. The series of TOTEM elastic pp measurements show that the dip is a permanent feature of the pp differential cross-section at the TeV scale.
Differential cross-section.
The well-known class-A quark-model relations of Białas and Zalewski are parametrised in a particular form, where one can compare the data with the predictions separately for the meson non-flip and flip parts, defined in the transversity frame. A 3-parameter fit to the joint decay angular distribution is performed on the experimental data, and the results are compared with the quark-model predictions for various regions of the four-momentum transfer. The effect of an s -wave state under the ρ 0 is discussed.
A THREE PARAMETER FIT IS MADE TO THE JOINT DECAY DISTRIBUTION.
A first measurement is presented of exclusive photoproduction of $\rho^0$ mesons associated with leading neutrons at HERA. The data were taken with the H1 detector in the years $2006$ and $2007$ at a centre-of-mass energy of $\sqrt{s}=319$ GeV and correspond to an integrated luminosity of $1.16$ pb$^{-1}$. The $\rho^0$ mesons with transverse momenta $p_T<1$ GeV are reconstructed from their decays to charged pions, while leading neutrons carrying a large fraction of the incoming proton momentum, $x_L>0.35$, are detected in the Forward Neutron Calorimeter. The phase space of the measurement is defined by the photon virtuality $Q^2 < 2$ GeV$^2$, the total energy of the photon-proton system $20 < W_{\gamma p} < 100$ GeV and the polar angle of the leading neutron $\theta_n < 0.75$ mrad. The cross section of the reaction $\gamma p \to \rho^0 n \pi^+$ is measured as a function of several variables. The data are interpreted in terms of a double peripheral process, involving pion exchange at the proton vertex followed by elastic photoproduction of a $\rho^0$ meson on the virtual pion. In the framework of one-pion-exchange dominance the elastic cross section of photon-pion scattering, $\sigma^{\rm el}(\gamma\pi^+ \to \rho^0\pi^+)$, is extracted. The value of this cross section indicates significant absorptive corrections for the exclusive reaction $\gamma p\to\rho^0 n \pi^+$.
The $\gamma p$ cross section integrated in the domain $0.35 < x_L < 0.95$ and $-t^\prime < 1$~GeV$^2$ and averaged over the energy range $20 < W_{\gamma p} < 100$ GeV for two intervals of leading neutron transverse momentum.
Differential photoproduction cross sections ${\rm d}\sigma_{\gamma p}/{\rm d}x_L$ for the exclusive process $\gamma p \to \rho^0 n \pi^+$ in two regions of neutron transverse momentum and $20 < W_{\gamma p} < 100$ GeV. The statistical, uncorrelated and correlated systematic uncertainties, $\delta_{stat}$, $\delta_{sys}^{unc}$ and $\delta_{sys}^{cor}$ respectively, are given, which does not include the global normalisation error of $4.4\%$.
Double differential photoproduction cross sections ${\rm d^2}\sigma_{\gamma p}/{\rm d}x_L{\rm d}p_{T,n}^2$ in the range $20 < W_{\gamma p} < 100$ GeV. The statistical, uncorrelated and correlated systematic uncertainties, $\delta_{stat}$, $\delta_{sys}^{unc}$ and $\delta_{sys}^{cor}$ respectively, are given, which does not include the global normalisation error of $4.4\%$.
We report the first measurement of the net-charge fluctuations in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV, measured with the ALICE detector at the CERN Large Hadron Collider. The dynamical fluctuations per unit entropy are observed to decrease when going from peripheral to central collisions. An additional reduction in the amount of fluctuations is seen in comparison to the results from lower energies. We examine the dependence of fluctuations on the pseudorapidity interval, which may account for the dilution of fluctuations during the evolution of the system. We find that the fluctuations at LHC are smaller compared to the measurements at the Relativistic heavy Ion Collider (RHIC), and as such, closer to what has been theoretically predicted for the formation of Quark-Gluon Plasma (QGP).
The measured NU(+-DYN) as a function of the centrality of the collisions, expressed as the number of participating nucleons, for two values of midrapidity range.
NU(+-DYN), corrected for charge conservation and finite acceptance effects, as a function of the centrality of the collisions, expressed as the number of participating nucleons, for two values of midrapidity range.
The measured and corrected NU(+-DYN) in P P collisions for two values of midrapidity range.
Photoproduction of neutral pions has been studied with the CBELSA/TAPS detector in the reaction $\gamma p\to p\pi^0$ for photon energies between 0.85 and 2.50 GeV. The $\pi^0$ mesons are observed in their dominant neutral decay mode: $\pi^0\to\gamma\gamma$. For the first time, the differential cross sections cover the very forward region, $\theta_{\rm c.m.}<60^\circ$. A partial-wave analysis of these data within the Bonn-Gatchina framework observes the high-mass resonances $G_{17}$(2190), $D_{13}$(2080), and $D_{15}$(2070).
Differential cross section for the process GAMMA P --> PI0 P as a function of the cosine of the centre-of-mass scattering angle of the PI0 for photon energies from 0.850 to 0.875 GeV.
Differential cross section for the process GAMMA P --> PI0 P as a function of the cosine of the centre-of-mass scattering angle of the PI0 for photon energies from 0.875 to 0.900 GeV.
Differential cross section for the process GAMMA P --> PI0 P as a function of the cosine of the centre-of-mass scattering angle of the PI0 for photon energies from 0.900 to 0.925 GeV.
Decays of $b$ hadrons into final states containing a $D^0$ meson and a muon are used to measure the $b\bar{b}$ production cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC. In the pseudorapidity interval $2 < \eta < 6$ and integrated over all transverse momenta we find that the average cross-section to produce $b$-flavoured or $\bar{b}$-flavoured hadrons is ($75.3 \pm 5.4 \pm 13.0$) microbarns.
The cross section for b-flavoured hadrons (HADRON/B) as a function of pseudorapidity in proton-proton collisions at a centre-of-mass energy of 7 TeV. Cross sections are shown using fragmentation fractions both from LEP and from the Tevatron. See comment above regarding this latter point.
The cross section for b-flavoured hadrons (HADRON/B) over the pseudorapidity range 2.0-6.0 in proton-proton collisions at a centre-of-mass energy of 7 TeV. Cross sections are shown using fragmentation fractions both from LEP and from the Tevatron. See comment above regarding this latter point.
We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT > 0.5 GeV/c, pseudorapidity |\eta| < 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of \eta-\phi space; toward, away, and transverse, where \phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.
Drell-Yan events. Charged particle density in the toward, transverse and away regions.
Drell-Yan events. Charged particle density in the transMAX, transMIN and transDIF regions.
Drell-Yan events. Charged particle PTsum density in the toward, transverse and away regions.
We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.
No description provided.
No description provided.
No description provided.