K^+K^- production in two-photon collisions has been studied using a large data sample of 67 fb^{-1} accumulated with the Belle detector at the KEKB asymmetric e^+e^- collider. We have measured the cross section for the process gamma gamma -> K^+ K^- for center-of-mass energies between 1.4 and 2.4 GeV, and found three new resonant structures in the energy region between 1.6 and 2.4 GeV. The angular differential cross sections have also been measured.
Cross section for two photon production of K+ K- in the polar angular region ABS(COS(THETA*)) < 0.6.
Differential cross sections DSIG/DCOS(THETA) for the W range 1.40 to 1.56 GeV.. Statistical errors only.
Differential cross sections DSIG/DCOS(THETA) for the W range 1.56 to 1.72 GeV.. Statistical errors only.
We have measured pi+pi- and K+K- production in two-photon collisions using 87.7 /fb of data collected with the Belle detector at the asymmetric energy e+e- collider KEKB. The cross sections are measured to high precision in the two-photon center-of-mass energy (W) range between 2.4 GeV < W < 4.1 GeV and angular region |cos theta^{*}| < 0.6. The cross section ratio sigma(gammagamma->K+K-)/sigma(gammagamma->pi+pi-) is measured to be 0.89 +- 0.04(stat) +- 0.15(syst) in the range of 3.0 GeV < W < 4.1 GeV, where the ratio is energy independent. We observe a sin^{-4} theta^{*} behavior of the cross section in the same W range. Production of chi_{c0} and chi_{c2} mesons is observed in both gammagamma -> pi+pi- and gammagamma -> K+K- modes.
Cross sections for PI+ PI- and K+ K- production.
Ratio of K+ K- to PI+ PI- production in the region of W from 3.0 to 4.1 GeV, where the ratio is energy independent.
Angular dependence of the normalized differential cross section, $\sigma_0^{-1}{\rm d}\sigma/{\rm d}|\cos\theta^*|$, for the $K^+K^-$ process. The errors are statistical only.
A high precision study of the process gamma gamma -> p p-bar has been performed using a data sample of 89/fb collected with the Belle detector at the KEKB e+e- collider. The cross section of p p-bar production has been measured at two-photon center-of-mass (c.m.) energies between 2.025 and 4.0 GeV and in the c.m. angular range of |cos(theta^*)|<0.6. Production of gamma gamma -> eta_c -> p p-bar is observed and the product of the two-photon width of the eta_c and its branching ratio to p p-bar is determined.
We present an analysis of charm quark fragmentation at 10.6 GeV, based on a data sample of 103 fb collected by the Belle detector at the KEKB accelerator. We consider fragmentation into the main charmed hadron ground states, namely \DZ, \DP, \Ds and \LC, as well as the excited states \DSZ and \DSP. The fragmentation functions are important to measure as they describe processes at a low energy scale, where calculations in perturbation theory lead to large uncertainties. Fragmentation functions can also be used as input distributions for Monte Carlo generators. Additionally, we determine the average number of these charmed hadrons produced per B decay at the \Ys resonance and measure the distribution of their production angle in \epem annihilation events and in B decays.
This article describes a determination of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cb}|$ from the decay $B^0\to D^{*-}\ell^+\nu_\ell$ using 711 fb$^{-1}$ of Belle data collected near the $\Upsilon(4S)$ resonance. We simultaneously measure the product of the form factor normalization $\mathcal{F}(1)$ and the matrix element $|V_{cb}|$ as well as the three parameters $\rho^2$, $R_1(1)$ and $R_2(1)$, which determine the form factors of this decay in the framework of the Heavy Quark Effective Theory. The results, based on about 120,000 reconstructed $B^0\to D^{*-}\ell^+\nu_\ell$ decays, are $\rho^2=1.214\pm 0.034\pm 0.009$, $R_1(1)=1.401\pm 0.034\pm 0.018$, $R_2(1)=0.864\pm 0.024\pm 0.008$ and $\mathcal{F}(1)|V_{cb}|=(34.6\pm 0.2\pm 1.0)\times 10^{-3}$. The branching fraction of $B^0\to D^{*-}\ell^+\nu_\ell$ is measured at the same time/ we obtain a value of $\mathcal{B}(B^0 \to D^{*-}\ell^+ \nu_\ell) = (4.58 \pm 0.03 \pm 0.26) %$. The errors correspond to the statistical and systematic uncertainties. These results give the most precise determination of the form factor parameters and $\mathcal{F}(1)|V_{cb}|$ to date. In addition, a direct, model-independent determination of the form factor shapes has been carried out.
The differential cross section for the process $\gamma \gamma \to \eta \pi^0$ has been measured in the kinematic range $0.84 \GeV < W < 4.0 \GeV$, $|\cos \theta^*|<0.8$, where $W$ and $\theta^*$ are the energy and $\pi^0$ (or $\eta$) scattering angle, respectively, in the $\gamma\gamma$ center-of-mass system. The results are based on a 223 fb$^{-1}$ data sample collected with the Belle detector at the KEKB $e^+ e^-$ collider. Clear peaks due to the $a_0(980)$ and $a_2(1320)$ are visible. The differential cross sections are fitted in the energy region $0.9 \GeV < W < 1.46 \GeV$ to obtain the parameters of the $a_0(980)$. Its mass, width and $\Gamma_{\gamma \gamma} \B (\eta \pi^0)$ are measured to be $982.3 ^{+0.6}_{-0.7} ^{+3.1}_{-4.7} \MeV/c^2$, $75.6 \pm 1.6 ^{+17.4}_{-10.0} \MeV$ and $128 ^{+3}_{-2} ^{+502}_{-43} \eV$, respectively. The energy and angular dependences above 3.1 GeV are compared with those measured in the $\pi^0 \pi^0$ channel. The integrated cross section over $|\cos \theta^*|<0.8$ has a $W^{-n}$ dependence with $n = 10.5 \pm 1.2 \pm 0.5$, which is slightly larger than that for $\pi^0 \pi^0$. The differential cross sections show a $\sin^{-4} \theta^*$ dependence similar to $\gamma \gamma \to \pi^0 \pi^0$. The measured cross section ratio, $\sigma(\eta \pi^0)/\sigma(\pi^0 \pi^0) = 0.48 \pm 0.05 \pm 0.04$, is consistent with a QCD-based prediction.
The total cross section integrated over ABS(COS(THETA*)) < 0.8.
The differential cross section as a function of angle for W = 0.85 GeV.
The differential cross section as a function of angle for W = 0.87 GeV.
We report a measurement of the exclusive \$e^+e^- \to \Lambda_c^+ \Lambda_c^-$ cross section as a function of center-of-mass energy near the $\Lambda_c^+ \Lambda_c^-$ threshold. A clear peak with a significance of $8.8\sigma$ is observed in the $\Lambda_c^+ \Lambda_c^-$ invariant mass distribution just above threshold. With an assumption of a resonance origin for the observed peak, a mass and width of $M=(4634^{+8}_{-7} \mathrm{(stat.)} ^{+5}_{-8} \mathrm{(sys.)})\mevc$ and $\Gamma_{\mathrm{tot}}=(92^{+40}_{-24} \mathrm{(stat.)}^{+10}_{-21} \mathrm{(sys.)})\mev$ are determined. The analysis is based on a study of events with initial-state-radiation photons in a data sample collected with the Belle detector at the $\Upsilon(4S)$ resonance and nearby continuum with an integrated luminosity of 695 $\mathrm{fb}^{-1}$ at the KEKB asymmetric-energy $e^+e^_$ collider.
Cross section for the exclusive process E+ E- --> LAMBDA/C+ LAMBDA/CBAR-.
We present the measurement of the first to fourth order moments of the four-momentum transfer squared, $q^2$, of inclusive $B \rightarrow X_c \ell^+ \nu_{\ell}$ decays using the full Belle data set of 711 $\mathrm{fb}^{-1}$ of integrated luminosity at the $\Upsilon(4S)$ resonance where $\ell = e, \mu$. The determination of these moments and their systematic uncertainties open new pathways to determine the absolute value of the CKM matrix element $V_{cb}$ using a reduced set of matrix elements of the heavy quark expansion. In order to identify and reconstruct the $X_c$ system, we reconstruct one of the two $B$-mesons using machine learning techniques in fully hadronic decay modes. The moments are measured with progressively increasing threshold selections on $q^2$ starting with a lower value of 3.0 $\mathrm{GeV}^2$ in steps of 0.5 $\mathrm{GeV}^2$ up to a value of 10.0 $\mathrm{GeV}^2$. The measured moments are further unfolded, correcting for reconstruction and selection effects as well as QED final state radiation. We report the moments separately for electron and muon final states and observe no lepton flavor universality violating effects.
The first measurements of differential branching fractions of inclusive semileptonic ${B \to X_u \, \ell^+\, \nu_{\ell}}$ decays are performed using the full Belle data set of 711 fb$^{-1}$ of integrated luminosity at the $\Upsilon(4S)$ resonance and for $\ell = e, \mu$. Differential branching fractions are reported as a function of the lepton momentum, the four-momentum-transfer squared, light-cone momenta, the hadronic mass, and the hadronic mass squared. They are obtained by subtracting the backgrounds from semileptonic ${B \to X_c \, \ell^+\, \nu_{\ell}}$ decays and other processes, and corrected for resolution and acceptance effects. The measured distributions are compared to predictions from inclusive and hybrid ${B \to X_u \, \ell^+\, \nu_{\ell}}$ calculations.
We report a high-statistics measurement of differential cross sections for the process gamma gamma -> pi^0 pi^0 in the kinematic range 0.6 GeV <= W <= 4.0 GeV and |cos theta*| <= 0.8, where W and theta* are the energy and pion scattering angle, respectively, in the gamma gamma center-of-mass system. Differential cross sections are fitted to obtain information on S, D_0, D_2, G_0 and G_2 waves. The G waves are important above W ~= 1.6 GeV. For W <= 1.6 GeV the D_2 wave is dominated by the f_2(1270) resonance while the S wave requires at least one additional resonance besides the f_0(980), which may be the f_0(1370) or f_0(1500). The differential cross sections are fitted with a simple parameterization to determine the parameters (the mass, total width and Gamma_{gamma gamma}B(f_0 -> pi^0 pi^0)) of this scalar meson as well as the f_0(980). The helicity 0 fraction of the f_2(1270) meson, taking into account interference for the first time, is also obtained.
Differential cross section for W = 2.14, 2.18 and 2.22 GeV.