Date

Near-threshold photoproduction of $\Lambda(1520)$ from protons and deuterons

Muramatsu, N. ; Chen, J.Y. ; Chang, W.C. ; et al.
Phys.Rev.Lett. 103 (2009) 012001, 2009.
Inspire Record 817890 DOI 10.17182/hepdata.22937

Photoproduction of $\Lambda$(1520) with liquid hydrogen and deuterium targets was examined at photon energies below 2.4 GeV in the SPring-8/LEPS experiment. For the first time, the differential cross sections were measured at low energies and with a deuterium target. A large asymmetry of the production cross sections from protons and neutrons was observed at backward K$^{+/0}$ angles. This suggests the importance of the contact term, which coexists with t-channel K exchange under gauge invariance. This interpretation was compatible with the differential cross sections, decay asymmetry, and photon beam asymmetry measured in the production from protons at forward K$^+$ angles.

3 data tables match query

The measured differential cross sections from the liquid hydrogen target, protons, as a function the photon energy at forward K+ polar angles of 19-43 degrees .

The measured of differential cross section at backward K+/K0 polar angles of 120-150 degrees as a function of photon energy from the liquid hydrogen target, protons, and liquid deuterium target, deuterons.

The measured of differential cross section at backward K+/K0 polar angles of 150-180 degrees as a function of photon energy from the liquid hydrogen target, protons, and liquid deuterium target, deuterons.


Beam polarization asymmetries for the p(gamma,K+)Lambda and p(gamma,K+)Sigma0 reactions at E(gamma) = 1.5-GeV - 2.4-GeV.

The LEPS collaboration Zegers, R.G.T. ; Sumihama, M. ; Ahn, D.S. ; et al.
Phys.Rev.Lett. 91 (2003) 092001, 2003.
Inspire Record 613016 DOI 10.17182/hepdata.31708

Beam polarization asymmetries for the p(gamma,K+)Lambda and p(gamma,K+)sigma0 reactions are measured for the first time for Egamma=1.5-2.4 GeV and 0.6<cos(theta_cm(K+))<1.0 by using linearly polarized photons at the Laser-Electron-Photon facility at SPring-8 (LEPS). The observed asymmetries are positive and gradually increase with rising photon energy. The data are not consistent with theoretical predictions based on tree-level effective Lagrangian approaches. Including the new results in the development of the models is, therefore, crucial for understanding the reaction mechanism and to test the presence of baryon resonances which are predicted in quark models but are sofar undiscovered.

18 data tables match query

Measured beam asymmetries for the reaction GAMMA P --> K+ LAMBDA for beam energy 1.5 to 1.6.

Measured beam asymmetries for the reaction GAMMA P --> K+ LAMBDA for beam energy 1.6 to 1.7.

Measured beam asymmetries for the reaction GAMMA P --> K+ LAMBDA for beam energy 1.7 to 1.8.

More…

Diffractive Phi-meson photoproduction on proton near threshold.

The LEPS collaboration Mibe, T. ; Chang, W.C. ; Nakano, T. ; et al.
Phys.Rev.Lett. 95 (2005) 182001, 2005.
Inspire Record 684863 DOI 10.17182/hepdata.31587

Photoproduction of $\phi$-meson on protons was studied by means of linearly polarized photons at forward angles in the low-energy region from threshold to $E_{\gamma}$= 2.37 GeV. The differential cross sections at $t = -|t|_{min}$ do not increase smoothly as $E_{\gamma}$ increases, but show a local maximum at around 2.0 GeV. The angular distributions demonstrate that $\phi$-mesons are photo-produced predominantly by helicity-conserving processes, and the local maximum is not likely due to unnatural-parity processes.

14 data tables match query

Differential cross section as a function of T+ABS(TMIN) in the photon energy range 1.57 to 1.67 GeV.

Differential cross section as a function of T+ABS(TMIN) in the photon energy range 1.67 to 1.77 GeV.

Differential cross section as a function of T+ABS(TMIN) in the photon energy range 1.77 to 1.87 GeV.

More…

Measurement of the $\vec{\gamma} p \to K^+ \Lambda$ Reaction at Backward Angles

The LEPS collaboration Hicks, K. ; Mibe, T. ; Sumihama, M. ; et al.
2007.
Inspire Record 756925 DOI 10.17182/hepdata.25090

Cross sections for the $\gamma p \to K^+ \Lambda$ have been measured at backward angles using linearly polarized photons in the range 1.50 to 2.37 GeV. In addition, the beam asymmetry for this reaction has been measured for the first time at backward angles. The $\Lambda$ was detected at forward angles in the LEPS spectrometer via its decay to $p\pi^-$ and the K^+ was inferred using the technique of missing mass. These measurements, corresponding to kaons at far backward angles in the center-of-mass frame, complement similar CLAS data at other angles. Comparison with theoretical models shows that the reactions in these kinematics provide further opportunities to investigate the reaction mechanisms of hadron dynamics.

4 data tables match query

Differential cross sections as a function of the Mandelstam variable U for photon beam energy 1.5 to 1.8 GeV.

Differential cross sections as a function of the Mandelstam variable U for photon beam energy 1.8 to 2.1 GeV.

Differential cross sections as a function of the Mandelstam variable U for photon beam energy 2.1 to 2.4 GeV.

More…

Measurements of Proton High Order Cumulants in 3 GeV Au+Au Collisions and Implications for the QCD Critical Point

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.Lett. 128 (2022) 202303, 2022.
Inspire Record 1981670 DOI 10.17182/hepdata.115559

We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity ($y$) and transverse momentum ($p_{\rm T}$) within $-0.5 < y<0$ and $0.4 < p_{\rm T} <2.0 $ GeV/$c$. In the most central 0--5% collisions, a proton cumulant ratio is measured to be $C_4/C_2=-0.85 \pm 0.09 ~(\rm stat.) \pm 0.82 ~(\rm syst.)$, which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our $C_4/C_2$ in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in $C_4/C_2$ is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3 GeV.

1 data table match query

Collision energy dependence of the ratios of cumulants, $C_4/C_2$, for proton (squares) and net-proton (red circles) from top 0-5% Au+Au collisions at RHIC. The points for protons are shifted horizontally for clarity. The new result for proton from $\sqrt{s_{NN}}$ = 3.0 GeV collisions is shown as a filled square. HADES data of $\sqrt{s_{NN}}$ = 2.4 GeV 0-10% collisions is also shown. The vertical black and gray bars are the statistical and systematic uncertainties, respectively. In addition, results from the HRG model, based on both Canonical Ensemble (CE) and Grand-Canonical Ensemble (GCE), and transport model UrQMD are presented.


Light Nuclei Collectivity from $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au Collisions at RHIC

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 827 (2022) 136941, 2022.
Inspire Record 1986611 DOI 10.17182/hepdata.115569

In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, $v_1$ and $v_2$, of light nuclei ($d$, $t$, $^{3}$He, $^{4}$He) produced in $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured $v_1$ slopes of light nuclei at mid-rapidity. For the measured $v_2$ magnitude, a strong rapidity dependence is observed. Unlike $v_2$ at higher collision energies, the $v_2$ values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.

1 data table match query

Light nucleus scaled $v_{1}$ slopes as a function os collision energy in 10-40 mid-cantral Au+Au collisions.


Flow and interferometry results from Au+Au collisions at $\sqrt{\textit{s}_{NN}}$ = 4.5 GeV

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Phys.Rev.C 103 (2021) 034908, 2021.
Inspire Record 1809043 DOI 10.17182/hepdata.95903

The Beam Energy Scan (BES) program at the Relativistic Heavy Ion Collider (RHIC) was extended to energies below $\sqrt{\textit{s}_{NN}}$ = 7.7 GeV in 2015 by successful implementation of the fixed-target mode of operation in the STAR (Solenoidal Track At RHIC) experiment. In the fixed-target mode, ions circulate in one ring of the collider and interact with a stationary target at the entrance of the STAR Time Projection Chamber. The first results for Au+Au collisions at $\sqrt{\textit{s}_{NN}}$ = 4.5 GeV are presented, including directed and elliptic flow of identified hadrons, and radii from pion femtoscopy. The proton flow and pion femtoscopy results agree quantitatively with earlier measurements by Alternating Gradient Synchrotron experiments at similar energies. This validates running the STAR experiment in the fixed-target configuration. Pion directed and elliptic flow are presented for the first time at this beam energy. Pion and proton elliptic flow show behavior which hints at constituent quark scaling, but large error bars preclude reliable conclusions. The ongoing second phase of BES (BES-II) will provide fixed-target data sets with 100 times more events at each of several energies down to $\sqrt{\textit{s}_{NN}}$ = 3.0 GeV.

1 data table match query

Beam energy dependence of the directed flow slope dv1=dy at midrapidity for baryons and mesons measured by STAR.


Multiplicity and pseudorapidity distributions of charged particles and photons at forward pseudorapidity in Au + Au collisions at s(NN)**(1/2) = 62.4-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 73 (2006) 034906, 2006.
Inspire Record 697905 DOI 10.17182/hepdata.98930

We present the centrality dependent measurement of multiplicity and pseudorapidity distributions of charged particles and photons in Au + Au collisions at sqrt{s_NN} = 62.4 GeV. The charged particles and photons are measured in the pseudorapidity region 2.9 < eta < 3.9 and 2.3 < eta < 3.7, respectively. We have studied the scaling of particle production with the number of participating nucleons and the number of binary collisions. The photon and charged particle production in the measured pseudorapidity range has been shown to be consistent with energy independent limiting fragmentation behavior. The photons are observed to follow a centrality independent limiting fragmentation behavior while for the charged particles it is centrality dependent. We have carried out a comparative study of the pseudorapidity distributions of positively charged hadrons, negatively charged hadrons, photons, pions, net protons in nucleus--nucleus collisions and pseudorapidity distributions from p+p collisions. From these comparisons we conclude that baryons in the inclusive charged particle distribution are responsible for the observed centrality dependence of limiting fragmentation. The mesons are found to follow an energy independent behavior of limiting fragmentation while the behavior of baryons seems to be energy dependent.

2 data tables match query

(Color Online) Half width at half maximum of the pseudorapidity distributions ($\eta_{h}$) of charged particles as a function of total charged particle multiplicity ($N_{T}$) normalized to the center of mass energy. The Au + Au collision data are from the PHOBOS [8] experiment and p + p collision data are from the ISR [31] experiments.

(Color Online) Half width at half maximum of the pseudorapidity distributions ($\eta_{h}$) of charged particles as a function of total charged particle multiplicity ($N_{T}$) normalized to the center of mass energy. The Au + Au collision data are from the PHOBOS [8] experiment and p + p collision data are from the ISR [31] experiments.


Disappearance of partonic collectivity in $\sqrt{s_{NN}}$ = 3 GeV Au+Au collisions at RHIC

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 827 (2022) 137003, 2022.
Inspire Record 1897294 DOI 10.17182/hepdata.110656

We report on the measurements of directed flow $v_1$ and elliptic flow $v_2$ for hadrons ($\pi^{\pm}$, $K^{\pm}$, $K_{S}^0$, $p$, $\phi$, $\Lambda$ and $\Xi^{-}$) from Au+Au collisions at $\sqrt{s_{NN}}$ = 3 GeV and $v_{2}$ for ($\pi^{\pm}$, $K^{\pm}$, $p$ and $\overline{p}$) at 27 and 54.4 GeV with the STAR experiment. While at the two higher energy midcentral collisions the number-of-constituent-quark (NCQ) scaling holds, at 3 GeV the $v_{2}$ at midrapidity is negative for all hadrons and the NCQ scaling is absent. In addition, the $v_1$ slopes at midrapidity for almost all observed hadrons are found to be positive, implying dominant repulsive baryonic interactions. The features of negative $v_2$ and positive $v_1$ slope at 3 GeV can be reproduced with a baryonic mean-field in transport model calculations. These results imply that the medium in such collisions is likely characterized by baryonic interactions.

26 data tables match query

$v_2$ scaled by the number of constituent quarks, $v_2/n_q$ , as a function of scaled transverse kinetic energy ($(m_T − m_0)/n_q$) for pions, kaons and protons from Au+Au collisions in 10-40% centrality at $\sqrt{s_{NN}}$ = 3, 27, and 54.4 GeV for positive charged particles (left panel) and negative charged particles (right panel). Colored dashed lines represent the scaling fit to data in 7.7, 14.5, 27, 54.4, and 200 GeV Au+Au collisions from STAR experiment at RHIC [43–45]. Statistical and systematic uncertainties are shown as bars and gray bands, respectively. Some uncertainties are smaller than the data points.

$v_2$ scaled by the number of constituent quarks, $v_2/n_q$ , as a function of scaled transverse kinetic energy ($(m_T − m_0)/n_q$) for pions, kaons and protons from Au+Au collisions in 10-40% centrality at $\sqrt{s_{NN}}$ = 3, 27, and 54.4 GeV for positive charged particles (left panel) and negative charged particles (right panel). Colored dashed lines represent the scaling fit to data in 7.7, 14.5, 27, 54.4, and 200 GeV Au+Au collisions from STAR experiment at RHIC [43–45]. Statistical and systematic uncertainties are shown as bars and gray bands, respectively. Some uncertainties are smaller than the data points.

$v_2$ scaled by the number of constituent quarks, $v_2/n_q$ , as a function of scaled transverse kinetic energy ($(m_T − m_0)/n_q$) for pions, kaons and protons from Au+Au collisions in 10-40% centrality at $\sqrt{s_{NN}}$ = 3, 27, and 54.4 GeV for positive charged particles (left panel) and negative charged particles (right panel). Colored dashed lines represent the scaling fit to data in 7.7, 14.5, 27, 54.4, and 200 GeV Au+Au collisions from STAR experiment at RHIC [43–45]. Statistical and systematic uncertainties are shown as bars and gray bands, respectively. Some uncertainties are smaller than the data points.

More…

Global $\Lambda$-hyperon polarization in Au+Au collisions at $\sqrt{s_\mathrm{NN}}=3$ GeV

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 104 (2021) L061901, 2021.
Inspire Record 1897216 DOI 10.17182/hepdata.110658

Global hyperon polarization, $\overline{P}_\mathrm{H}$, in Au+Au collisions over a large range of collision energy, $\sqrt{s_\mathrm{NN}}$, was recently measured and successfully reproduced by hydrodynamic and transport models with intense fluid vorticity of the quark-gluon plasma. While naïve extrapolation of data trends suggests a large $\overline{P}_\mathrm{H}$ as the collision energy is reduced, the behavior of $\overline{P}_\mathrm{H}$ at small $\sqrt{s_\mathrm{NN}}<7.7$ GeV is unknown. Operating the STAR experiment in fixed-target mode, we measured the polarization of $\Lambda$ hyperons along the direction of global angular momentum in Au+Au collisions at $\sqrt{s_\mathrm{NN}}=3$ GeV. The observation of substantial polarization of $4.91\pm0.81(\rm stat.)\pm0.15(\rm syst.)$% in these collisions may require a reexamination of the viscosity of any fluid created in the collision, of the thermalization timescale of rotational modes, and of hadronic mechanisms to produce global polarization.

1 data table match query

The integrated Global $\Lambda$-hyperon Polarization in mid-central collisions at $\sqrt{s_{\rm NN}}=3$ GeV. The trend of increasing $\overline{P}_{\rm H}$ with decreasing $\sqrt{s_{\rm NN}}$ is maintained at this low collision energy. Previous experimental results are scaled by the updated $\Lambda$-hyperon decay parameter $\alpha_\Lambda=0.732$ for comparison with this result. Recent model calculations extended to low collision energy show disagreement between our data and AMPT and rough agreement with the 3-Fluid Dynamics (3FD) model. Previous measurements shown alongside our data can be found at: https://www.hepdata.net/record/ins750410?version=2; https://www.hepdata.net/record/ins1510474?version=1; https://www.hepdata.net/record/ins1672785?version=2; https://www.hepdata.net/record/ins1752507?version=2.