We have conducted a search for bound states of a negative pion and a number of neutrons (pineuts) using the E814 spectrometer. A beam of Si28 at a momentum of 14.6A GeV/c was used to bombard targets of Al, Cu, Sn, and Pb. We describe our experimental technique, present measured upper limits for pineut production, and discuss the significance of our results.
AUTHORS NAMED CHARGED- BY PINEUT. Here ALL means the total number of interactions.
We have investigated the fragmentation of 3.65 GeV/nucleon O16, Mg24, and S32 projectiles on C, Al, Cu, Ag, and Pb targets using solid state nuclear track detectors. Track counting was performed by an automatic measuring system. Total charge changing and the partial cross sections for the production of fragments with charges 9≤Z≤15 for S32 projectiles and of charge 6≤Z≤11 for Mg24 were determined. Comparison with theoretical models and other experimental data is made.
No description provided.
The total cross section for γp→ηp near threshold has been measured using the PHOENICS tagging system at the ELSA electron facility of the Physikalisches Institut der Universität Bonn. The photons are created by bremsstrahlung, and are tagged by measuring the momentum of each electron after the photon has been emitted. The recoil proton from γp→ηp is detected by the AMADEUS counter setup in coincidence with the tagging system. Data were taken with AMADEUS at 3.3° in the laboratory, where the large Jacobian increases our event rate so that we obtain the cross section from threshold (Eγ=707.2 MeV) to Eγ≃720 MeV with adequate statistics. The γp→ηp events are identified by kinematics, dE/dx, and timing information. We find that in our energy region the production cross section is consistent with S-wave production.
No description provided.
The vector analyzing power iT11 and the composite observable τ22=T22+T20/ √6 were measured at 10 incident pion energies between 100 and 294 MeV, in an angular range between 50° and 120°. Two different techniques were applied, the detection of the pion with a magnet spectrometer, and the πd coincidence method with scintillation counters. In the case of the first technique also two different target materials were used. Consistency among all data was obtained. The experimental data are compared to Faddeev calculations from one of us (H.G.). The discrepancies between theory and experiment are discussed, and an outlook for further research is given.
Vector analyzing power iT11 and composite observale TAU22 = T22 + T20/sqrt(6). LiDeut target.
Vector analyzing power iT11 and composite observale TAU22 = T22 + T20/sqrt(6). LiDeut target.
Vector analyzing power iT11 and composite observale TAU22 = T22 + T20/sqrt(6). LiDeut target.
The annihilation p p → Φγ has been investigated with the Crystal Barrel detector at LEAR for antiprotons stopped in liquid hydrogen. The observed branching ratio BR ( p p → Φγ = (1.7 ± 0.4) · 10 −5 is almost two orders of magnitude higher than expected from the OZI-rule. As a by-product, the branching ratios BR ( p p → K L K S ) = (9.0 ± 0.6) · 10 −4 and BR ( p p → Φπ 0 ) = (5.5 ± 0.7) · 10 −4 have been measured.
No description provided.
None
No description provided.
The single spin asymmetry for inclusive direct-photon production has been measured using a polarized proton beam of 200 GeV/c with an unpolarized proton target at −0.15 < xf < 0.15 and 2.5 < pt < 3.1 GeV/c at Fermilab. The data on the cross section for pp → γX at 2.5 < pt < 3.8 GeV/c are also provided. The measurement was done using lead-glass calorimeters and photon detectors which surrounded the fiducial area of the calorimeters. Background rejection has been done using these surrounding photon detectors. The cross section obtained is consistent with the results of previous measurements assuming a nuclear dependence of A 1.0 . The single spin asymmetry, A N , for the direct-photon production is consistent with zero within experimental uncertainty.
No description provided.
No description provided.
The measurement of different reactions of p d annihilation at rest in a gaseous target has been performed using the OBELIX spectrometer at LEAR (CERN). A strong deviation from the OZI-rule prediction was found from the measurement of the ratio R = φπ ωπ in two regions of proton momenta, P < 200 MeV/ c and P > 400 MeV/ c : R( φπ − ωπ − ) = (133 ± 26) × 10 −3 and (113 ± 30) × 10 −3 , respectively. These values are about 30 times greater than the theoretical prediction. For the first time the excitation of the †-resonance was observed among the final-state products of p d annihilation. The existence of a broad enhancement in the 4π invariant mass at m ≈ 1480 MeV, seen in previous experiments, was confirmed. A ≈ 100 MeV downward shift of the bump position, when the proton momentum increased up to P > 400 MeV/ c , was also observed, while the positions of ω, ϱ and f 2 (1270) did not change with the proton momentum. The following branching ratios were measured: BR( p d → π − φ p ) = (6.62 ± 0.49) × 10 −4 , for P < 200 MeV/ c ; BR( p d → π − φ p ) = (0.95 ± 0.22) × 10 −4 , for P > 400 MeV/ c ; BR( p d → π − ω p ) = (49.7 ± 8.9) × 10 −4 , for P < 200 MeV/ c ; BR( p d → π − ω p ) = (8.38 ± 1.09) × 10 −4 , for P > 400 MeV/ c ; BR( p d → 2π − π + p ) = (150 ± 6) × 10 −4 , for P < 200 MeV/ c ; BR( p d → 2π − π + p ) = (16.6 ± 0.9) × 10 −4 , for P > 400 MeV/ c ; BR( p d → 3π − 2π + p ) = (326 ± 12) × 10 −4 , for P < 200 MeV/ c ; BR( p d → 3π − 2π + p ) = (44 ± 7) × 10 −4 , for P > 400 MeV/ c ; BR( p d → Λ K + π − ) = (0.96 ± 0.19) × 10 −4 , for P > 400 MeV/ c ; BR( p d → Λ K + π − π 0 ) = (3.5 ± 0.8) × 10 −4 , for P > 400 MeV/ c ; BR( p p → 2π − 2π + ) = (540 ± 20) × 10 −4 ; BR( p p → 3π − 3π + ) = (251 ± 21) × 10 −4 .
No description provided.
No description provided.
No description provided.
None
CENTRAL EVENTS: 10% OF SIG(GEOM).
None
PRELIMINARY DATA FOR CENTRAL EVENTS.